
MoC - Master of Celebration
Automatic Playlist Generation

Version 1.0
August 26, 2003

Dominik Schnitzer1

This paper describes an implementation of the Music Similarity Measure of Jean-Julien
Aucouturier and Francois Pachet described in their paper Music Similarity Mea-
sures: What’s the Use? The proposed algorithm to compute a timbre distance be-
tween different pieces of music was used to create an automatic playlist generation tool
- MoC. Programming it was the main task of my interim at the IMKAI Institute of the
University of Vienna. Read on for the results and implementation details.

1<dominik@schnitzer.at>

Contents

1 Overview 3

2 Implementation 3
2.1 Requirements . 3
2.2 Analysis . 4

2.2.1 Usage: Adding MP3s . 6
2.3 Query . 6

2.3.1 Usage: Playlist Generation . 8

3 Evaluation 9
3.1 Sample Playlists . 9
3.2 Problems and Ideas for better Results . 10
3.3 Further Improvements . 11

4 Conclusion 12

2

1 Overview

MoC aims to be an automatic playlist generation tool for your digital music collec-
tion. Basically MoC analyzes the collection using Jean-Julien Aucouturier’s and Fran-
cois Pacet’s Music Similarity Measure described in [1], which enables computation of
timbre distances between songs. After analysis of a music collection, MoC is able to au-
tomatically generate playlists by searching for the most similar songs for a given query
song. The query song is selected by the user, the playlist and thus the search for simi-
lar songs done automatically by MoC. MoC doesn’t include any song meta data in it’s
search, it works on raw audio data and analysis of it.

MoC runs under GNU/Linux and is written in C++. MoC is my first experience in
experimenting with music similarity measures. It was created as an interim work at the
IMKAI Institute of the University of Vienna [2].

2 Implementation

As mentioned before, MoC basically implements the ideas presented in [1]. In addition
to the steps presented in the mentioned paper, extra processing like normalizing the
music had to be done, to get good results with the similarity measure. MoC has two
operation modes: Analysis and Query mode. Songs are analyzed and added to the
MoC repository in Analyze mode, in Query mode playlists are generated. A work-
flow diagram is presented for every mode, which is then described step by step. Text
in brackets generally points to files in the MoC program sources, to make finding the
referenced functions easier.

2.1 Requirements

The following libraries are required to successfully build MoC on your Linux machine:

� GStreamer Libraries, Version 0.6.0, http://www.gstreamer.net/
These libraries do the MP3 decoding and down-sampling of the audio data, so
basically they are required to get the music files in the right shape for analysis.

� FFTW Library, Version 3.0, http://www.fftw.org/
This is the fastest library to get an FFT analysis done.

� GTKMM Libraries, Version 2.2, http://gtkmm.sf.net/
Used for the tiny Graphical User Interface, for generating playlists.

� Besides: A fairly new GCC Compiler (Version 3.2) will help.

3

Figure 1: Audio Analysis in MoC

2.2 Analysis

Figure 1 sketches the whole process of sound analysis, taking place in MoC.
But before real timbre analysis of a music piece, following preprocessing steps have to
be taken:

� Decode the compressed music file. Currently MoC can only handle MP3 audio
files. It uses the GStreamer audio framework to decode the MPEG data. It will be
quite easy to extend the supported file-types of MoC, by just using the appropriate
GSteamer plug-in. (src/audiofilein.cc)

� Down-sample it to mono, 22050Hz, 16Bit. After decoding, audio is down-sampled
with a GStreamer plug-in to one channel and a predefined frequency. [Music
Similarity Measures: What’s the Use] doesn’t mention this step, but for the sake
of processing speed and usability of the program, downsampling seemed absolutely
necessary. (src/audiofilein.cc)

� Normalize the audio data. This step had to be taken into account (with all it’s
bad side effects), since my reference and test music collection, like everybody else’s,
varied greatly in sound volume. In MoC a freely available algorithm to normalize
music was chosen: normalization with the replaygain algorithm. Replaygain takes
various psychoacoustic thoughts into account, and is in a C and Matlab reference
implementation available here [3]. Since it takes some psychoacoustic thoughts
into account, it should at least result in a qualitative quite good normalization.

4

MoC uses a freely available replaygain C-implementation. (src/gstreplaygain.c,
src/gain analysis.c)

After these preprocessing steps real audio signal analysis starts:

� Apply a STFT on the audio data. It is suggested in [1] that a Short Time Fourier
Transformation should be done for every 50ms of audio. MoC uses a 2048 samples
windowsize, resulting in a 90ms analysis window. Since MoC overlaps 1/2 of the
processed window in every step, the effective STFT resolution actually boils down
to 50ms again.
The FFT analysis is done with help of the high speed FFTW Library, and uses
double precision. (src/stft.cc, src/moc.cc::get gmm())

� Timbre extraction using MFFCs. In this step the data vectors resulting from the
STFT are used to find the Mel Frequency Cepstrum Coefficients for every window.
The MFCCs for each frame then describe it’s local timbre. Only the first 8 MFCCs
are computed. MoC uses Malcom Slaney’s Matlab MFCC implementation [4] as a
reference for it’s C++ one. After computation of the MFCCs, the timbre analysis
data of a typical 3 minute song would consist of about 32.000 coefficients (4000
analysis windows of 8 dimensional MFCC analysis vectors). (src/mfcc.cc)

� Fit the timbre data a Gaussian Mixture Model. In this step it is tried to fit the
timbre analysis data vectors of the previous step into a Gaussian Mixture Model
consisting of three, 8-dimensional Gaussian distributions (a GMM with M=3). To
fit the data into the three gaussians, as proposed, classic Expectation Maximization
(EM) is used for finding the optimum cluster. In this implementation EM with a
maximum of 800 iterations is performed. EM is initialized by a standard K-Means
clusterer.
After fitting the datapoints into the GMM only 51 numbers characterize a song
- the parameters of three gaussians plus a weighting coefficient for each gaussian,
specifying the importance/weight of it in the GMM.
(src/moc.cc::clusterby kmeans()|clusterby em())

After analysis, the during the song timbre analysis gathered data, is stored in the
$HOME/.moc/ directory. Each song indexed under it’s MD5 checksum. By using
the file’s MD5 checksum as an index, duplicates are avoided and results of analysis
can be tracked down manually easy, by finding out an mp3 file’s MD5 sum (i.e. using
the md5 command) and looking for the according file in the $HOME/.moc/ directory.
(src/gmm.cc::save model())

The contents of a typical analysis file looks like this:

/music/Nena - Irgendwie, Irgendwo, Irgendwann (New Version).mp3

GMM: Mixture-Models 3 Gauss-Dimensions 8

MD5: 6a78ce7216ae8aeb38a80e3309b12b92

5

Figure 2: Playlist generation in MoC

Covariances:

Model 0: 101.641 0.332 0.153 0.141 0.157 0.090 0.103 0.096

Model 1: 1.320 0.137 0.194 0.092 0.050 0.057 0.040 0.043

Model 2: 0.490 0.098 0.091 0.099 0.055 0.042 0.042 0.039

Means:

Model 0: -21.014 1.365 -0.072 0.055 -0.226 0.082 -0.001 0.247

Model 1: -14.825 2.144 0.203 0.436 0.181 0.163 0.051 0.096

Model 2: -12.612 1.445 0.282 0.354 0.187 0.227 -0.039 0.117

Priors:

Model 0: 0.07316254277

Model 1: 0.3204650521

Model 2: 0.6063724051

2.2.1 Usage: Adding MP3s

After building and installing MoC on your machine, you’ll have to add some MP3s to
MoCs repository, to generate playlists in the next step. Issue at the command prompt:

moc -a *.mp3

This will add all files in the current directory to MoC. It will take some time. Adding
one MP3 takes about 1 minute on a 600 MHz machine. After adding some more MP3s,
first playlists can be generated, by using the query mode, which is described in the next
chapter. All analysis information gathered through time is placed in $HOME/.moc/.

2.3 Query

The Query mode of MoC is shown in Figure 2. It is used to generate playlists using one
song chosen by the user (the query song) as base song for generation. Before playlist
generation can take place the following initialization steps have to be done:

6

� Load the song database. During MoC initialization all previously computed song
models are loaded into memory. (src/moc.cc::init database())

� Lookup the Query song. After database initialization the given query song is looked
up in the database. Lookup is done by calculating the MD5 sum of the MP3 file
and searching for the checksum in the database. (src/main.cc)

Now that all required song information and song models are available and playlist gen-
eration can proceed.

� Compute all song distances the query song. To compute distances from one song
to another a simple technique was chosen: For every GMM in the database, 2000
datapoints are sampled using random numbers based on the gaussian parameters
of the song models. Then the likelihood of the newly sampled datapoints, given the
query song model, is computed. This basically gives a probability how similar a
GMM is to another - this value is neither normalized nor symmetric. Unfortunately
[1] doesn’t say how to normalize the calculated pseudo distances. At the time
of writing Aucouturier and Pachet published a new paper on their website [5],
explicitly mentioning the normalization process, but the given formula isn’t very
clear on this topic too.
This is what MoC uses for timbre distance calculation between two songs a and b.
(src/gmm.cc)

Timbre Distance Computation in MoC

D(a, b) =

(∣∣∣1− P (a, b)

P (a, a)

∣∣∣+∣∣∣1− P (b, a)

P (b, b)

∣∣∣) ∗ 1

2
(1)

D(a,b) timbre distance between song a and b
P(a,b) sum of the probabilities, that a datapoint, which was sampled

with the GMM of b, is created by the GMM of a.

� Playlist output. After all distances from the query song to the songs in the database
are computed, this list is reverse-sorted by distance. The first N songs (N is chosen
by the user) of this list are the songs, which are closest to the query song. Those
songs form the final playlist and are written to the terminal/a file or loaded in the
MP3 player, depending on what MoC front-end is used. (src/main.cc)

7

Figure 3: Using mocmanager in the Gnome Nautilus File-manager.

2.3.1 Usage: Playlist Generation

After having added some MP3s to MoC’s repertoire, it’s possible to generate first
playlists. The command:

moc -q 10 ’/music/Die Aerzte - Ein Lied fuer dich.mp3’ > play.m3u

generates a 10 elements playlist, starting with the song Die Aerzte - Ein Lied fuer dich.
After about 30 seconds (for my 1700 titles large collection) the following playlist was
generated:

/music/Die Aerzte - Ein Lied fuer dich.mp3

/music/Die Aerzte - Meine Freunde.mp3

/music/U2 - Elevation (Tomb Raider Mix).mp3

/music/Ac Dc - Hells Bells.mp3

/music/Die Toten Hosen - Paradies.mp3

/music/Die Aerzte - Angeber.mp3

/music/Die Aerzte - Schunder-Song.mp3

/music/Puddle Of Mud - She Hates Me.mp3

/music/Die Aerzte - Langweilig.mp3

/music/Rem - Its The End Of The World As We Know It.mp3

The above command pipes all output of MoC into a file called play.m3u, which can be
played by modern MP3 players, like xmms:

xmms play.m3u

8

MoC in it’s current release also includes a gtk2 front-end, which can be used to integrate
MoC in your preferred file-manager. The binary is called mocmanager and has the same
command line syntax as the classic moc program, so MP3 files can be easily linked, to be
processed with mocmanager. The GUI version of MoC has a progress bar, indicating the
playlist generation progress and directly opens the results in your favorite MP3 player.

3 Evaluation

MoCs project web-page is: http://www.schnitzer.at/dominik/moc/
Besides the latest MoC version and more documents about it, the web-page also hosts
a copy of the test data, 1700 song analysis results, used in this paper.

3.1 Sample Playlists

A Good Playlist This playlist is an example for a very good result. As seen, base for
the query was the song Tori Amos - China. In the 20 elements long result 5 songs of
Tori Amos are found and - except song 5 - all sound very similar: They have less or low
background music and the artist tries to sing very beautiful (i.e. Evita, Diana Krall,
Ella Fitzgerald). Surprisingly even the schmaltzy N’sync song fits into the playlist.

1 /music/Tori Amos - China.mp3

2 /music/Tori Amos - Silent All These Years.mp3

3 /music/Tori Amos - Happy Phantom.mp3

4 /music/Tori Amos - Famous Blue.mp3

5 /music/Ferris Mc - Take Your Chance (Viel Zu Spaet).mp3

6 /music/Tony Bennett - I Left My Heart In San Francisco.mp3

7 /music/Spooks - Karma Hotel.mp3

8 /music/Usher - You Remind Me of a Girl (Isis Remix).mp3

9 /music/Marilyn Monroe - I Wanna Be Loved By You.mp3

10 /music/Ella Fitzgerald - Night in Tunisia.mp3

11 /music/N’sync - This I Promise You.mp3

12 /music/Diana Krall - The Night We Called It A Day.mp3

13 /music/John Debney - A New Hope (The Emperors New Groove).mp3

14 /music/Evita - Don’t Cry For Me Argentina .mp3

15 /music/R. Kelly - The World’s Greatest.mp3

16 /music/Tori Amos - Never Seen Blue.mp3

17 /music/Tom Jones - Whats New Pussy Cat.mp3

18 /music/Deine Lakaien - 2nd Sun.mp3

19 /music/Bob Marley - Waiting In Vain.mp3

20 /music/Profyle - Liar.mp3

A Normal Playlist In this average query result using the punk rock song The Offspring
- Self Esteem as base song, about 40% of the songs on the playlist don’t fit on it: The
first 7 songs are well chosen, but Shania Twain, the country queen, or Aretha Franklin
and all songs at position 15+ are bad choices - Interesting to listen to, but with quite
a few inappropriate songs on the playlist, it’s a not so appealing experience if one is in
the mood for a certain music style.

1 /music/Offspring - Self Esteem.mp3

2 /music/Die Aerzte - Mnner Sind Schweine.mp3

9

3 /music/The Cult - Edie (Ciaobaby).mp3

4 /music/Die Aerzte - Die traurige Ballade von Susi Spakowski.mp3

5 /music/Bon Jovi - Bad Medicine.mp3

6 /music/Apollo 440 - Aint Talking About Dub.mp3

7 /music/Jbo/Jbo - Hose Runter.mp3

8 /music/Shania Twain - That Don’t Impress Me Much.mp3

9 /music/Him - Join Me.mp3

10 /music/Mad Caddies - Youth Gone Wild.mp3

11 /music/Die Aerzte - Mach Die Augen Zu.mp3

12 /music/Die Aerzte - Geh mit mir.mp3

13 /music/Aretha Franklin - Respect.mp3

14 /music/Die Aerzte - Ignorama.mp3

15 /music/Bruce Springsteen - Born In The Usa.mp3

16 /music/Fettes Brot - Schade Schokolade.mp3

17 /music/Los Del Rio - Macarena.mp3

18 /music/Dj Tomekk - 1,2,3 Rhymes Galore.mp3

19 /music/Gerd Show - Der Steuersong (Ketchup Song Rmx).mp3

20 /music/Corrs - Runaway.mp3

Bad Playlists Currently, and this partly has it’s origin in normalization of music before
analysis, especially disco music with heavy drums and electronic sounds gives very poor
playlists. An example playlist, where just one interesting result was found (song 5)
illustrates the problem:

1 /music/Djs At Work - Someday (Vocal Edit).mp3

2 /music/Susan Vega - My Name Is Luca.mp3

3 /music/Corrs - Breathless.mp3

4 /music/Michael Sembello - Maniac.mp3

5 /music/Sophie B. Hawkins - Right Beside You.mp3

6 /music/Tori Amos - Do It Again.mp3

...

3.2 Problems and Ideas for better Results

As shown in the previous section, sometimes weird playlists are computed using the
implemented music similarity measure, playlists where anybody could tell, that songs
on it just dont fit together.

Apart from the fact that really good working similarity measure isn’t found yet, in
the case of the implemented timbre similarity measure, sometimes bad performance
could also origin from the circumstance that a song can’t be represented well by 3
GMMs. Maybe using more GMMs for this very song would improve results dramatically.
Maybe using a 2 GMM model would be perfect. Dynamically choosing the number of
GMMs which represent a song best, would be ideal. Basically the problem in this case
would be finding the optimum number of clusters for the data-vectors to be analyzed.
Unfortunately determining the optimum number of clusters is not trivial.

Another problem occurring in the current implementation, not directly related to this
similarity measure, but with playlist generation in general, is best shown in Figure 4.
The problem shown comes from the fact that the playlists in MoC are all calculated with
the query/start song in mind, so they should all sound in a way similar to this song, but
among each other timbre distances could be very large. This issue could be resolved if

10

Figure 4: A Typical Playlist Generation Problem in MoC

the songs in MoC are put on a 2 dimensional grid. To archive this, distances from every
song to each other would have to be calculated, which is very time-consuming.

3.3 Further Improvements

Apart from the already suggested improvements which could improve the resulting
playlists by just relying on a timbre analysis, the following ideas could be merged into
MoC to further improve computed playlists:

1. Use song meta-information like artist/band or genre to spice up the results upon
user preference. This way it could be avoided that just songs of one artist are put
on the list. This requires a well maintained music collection or a way to gather
song information online.

2. Include another similarity measure like automatic genre recognition. Internally
MoC could include a predefined genre tree of/how genres fit/absolutely do not
fit together. Using this additional information genres which absolutely don’t fit
together (like the Bob Marley’s drums and some Disco beats) can be separated
clearly.

3. To speed up analysis, it could also be tried to operate directly on MPEG data,
which is the common format of music to be analyzed nowadays. The computa-
tional heavy part of decoding and (parts of) audio analysis would be unnecessary,
if analysis could be done directly on the MPEG audio data. This idea is also men-
tioned in a follow-up paper of Aucouturier and Pachet [5] and is closer researched
in this paper [6].

11

4 Conclusion

MoC in it’s current stage (Version 0.1.1) is not yet ready for Jon Doe’ living room and
his daily playlist generation. But it provides a good base and playground for further
experiments and improvements in the research area of automatic playlist generation and
music similarity.

12

References

[1] Aucouturier, J.J. & Pachet, F. Music Similarity Measures: What’s The Use?. In
proceedings of the 3rd International Symposium on Music Information Retrieval
(ISMIR) 2002 Paris, France.

[2] IMKAI Institute/University of Vienna, Austria
Web: http://www.ai.univie.ac.at/

[3] ReplayGain Volume Normalization Group
Web: http://www.replaygain.org/

[4] Slaney, M. Mel Frequency Cepstrum Coefficient Analysis. Matlab Implementation,
1998, Interval Research Corporation.

[5] Aucouturier, J.J. & Pachet, F. Finding Songs That Sound The Same. In proceedings
of the 1st IEEE Benelux Workshop on Model based Processing and Coding of Audio
(MPCA) 2002 Leuven, Belgium.

[6] Tzanetakis, G. and Cook, P. Sound Anaylsis using MPEG Compressed Audio. In
Proc. IEE International Conference on Acoustics, Speech and Signal Processing,
Istanbul 2000

13

