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Kurzfassung
Die vorliegende Dissertation entwickelt ein industriell einsatzfähiges Musikempfehlungssystem.
Um dieses Ziel zu erreichen, werden im Zuge der Arbeit drei Probleme gelöst. Diese Probleme
verhindern den Einsatz der zur Zeit besten inhaltsbasierten Algorithmen zur Berechnung von
Musikähnlichkeit in Systemen, die mit Millionen von Musikstücken operieren:

Zuerst wird gezeigt, wie man die nicht-vektoriellen Musikähnlichkeitsmodelle mit ihren nicht-
metrischen Divergenzen korrekt in Algorithmen, die den Zentroiden berechnen, verwendet. Alle
bisher veröffentlichen Arbeiten mussten die Daten dazu vorher künstlich vektorisieren.

Zweitens wird gezeigt, wie man das “Hub”-Problem dieser Algorithmen verringern kann.
Hubs sind Objekte in einem Empfehlungssystem, die ungewöhnlich oft als nächste Nachbarn
gefunden werden. Die besprochenen Musikähnlichkeitsalgorithmen sind besonders stark von dem
Problem betroffen, das ihre Retrieval-Qualität signifikant vermindert. Hubs sind ein generelles
Problem des maschinellen Lernens. In Untersuchungen zeigt die vorgestellte Methode positive
Effekte auch auf einer großen Zahl öffentlicher Datenbanken zur Evaluierung von Methoden des
maschinellen Lernens.

Drittens wird eine neue Methode zur Beschleunigung von Musikempfehlungsberechnung
vorgestellt. Die Methode verwendet ein Filter- und Verfeinerungs-System. Sie erreicht sehr
hohe Retrieval-Genauigkeit und beschleunigt Anfragen um einen Faktor 10–40 im Vergleich zu
einer linearen Suche. Die Methode ermöglicht es, alle vorgestellten Musikähnlichkeitsalgorithmen
auf großen Datenbanken mit Millionen von Musikstücken zu verwenden.

Schlussendlich werden alle drei entwickelten Methoden in einem großen
Musikempfehlungsprototypen zusammengefasst: Das System berechnet (i) ein natürliches
Clustering der Musikähnlichkeitsmodelle um (ii) die vorgestellte Methode gegen das Hub-
Problem zu verwenden, und verwendet (iii) das entwickelte Filter- und Verfeinerungs-System für
schnelle Abfragen in großen Datenbanken. Der Prototyp heißt “Wolperdinger”, arbeitet mit 2.3
Millionen Musikstücken und ist imstande, Empfehlungen in einem Bruchteil einer Sekunde zu
berechnen. Es ist das zur Zeit größte publizierte System zur inhaltsbasierten Musikempfehlung.
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Abstract
This thesis develops a large-scale music recommendation system. To achieve this goal we solve
three problems preventing the currently top-performing class of content-based music similarity
algorithms from being used as recommendation engine in huge databases with millions of songs:

First, we show how to correctly use the non-vectorial music similarity features with their non-
metric divergences in centroid-computing algorithms. All previous approaches had to artificially
vectorize the data before they were able to work with the features.

Second, we show how the problem of “hubs” can be alleviated. Hubs are objects in a rec-
ommendation system which are unwontedly often retrieved as nearest neighbors. The examined
music recommendation methods are especially prone to hubs, significantly decreasing their re-
trieval quality. We also identify hubs as a problem of machine learning and show the beneficial
effects of our method on a large number of general public machine learning collections.

Third, we present a new method to speed up music recommendation queries. The method
uses a filter-and-refine systems layout. It achieves a very high retrieval accuracy and speeds up
queries by a factor of 10–40 compared to a linear scan. The method enables us to use the music
similarity methods with very large databases.

We finally merge all three introduced methods in a large-scale, high-quality music recommen-
dation prototype: the system computes (i) a natural clustering of the music similarity features
to (ii) apply the introduced hub-reducing method and (iii) use the filter-and-refine method to
allow for fast retrieval. The prototype is called “Wolperdinger”, it operates on a collection of 2.3
million songs and it is able to answer recommendation queries in a fraction of a second. It is the
largest content-based music recommendation system published to date.
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Chapter 1

Introduction

Contents
1.1 The Digital Music Revolution . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 The Digital Music Revolution
The digital music revolution started silently, without much furor but changed the rules of music
consumption, sales and distribution overnight. It began in 1993 when the audio compression
technique, MPEG-1 Audio Layer 3, commonly referred as MP3, was standardized and ISO
approved [ISO93]. MP3 reduced the storage size of audio files to a fraction of their original size
on CD. Along with the Internet and capable computers, easy transfer and storage of music was
suddenly possible without requiring any additional physical music medium.

From that point, the size of private digital music collections exploded from few privately
owned CDs sitting on the shelf, to thousands of MP3 files stored on hard-disks and portable
music players. Ten years after the standardization of MP3, in 2003, the first on-line music stores
opened, among them the Apple iTunes1 on-line music store. Today this on-line store is one
of the most popular on-line digital-media stores worldwide hosting over 12 million tracks and
accounting for 75% of the on-line music sales in the US, according to the IFPI [IFP10].

Over the last decade more on-line music stores have opened all over the world. In 2009 over
400 on-line music stores in 60 different countries were open, accounting for 27% of the music
sold world-wide. According to a Forrester study it is expected that 2012 the music sold on-line

1http://www.apple.com/itunes/, visited August 12th, 2011
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2 CHAPTER 1. INTRODUCTION

will surpass CD sales2. At this point, for the first time in history, more people will shop music
on-line instead of buying it in a retail store.

As ubiquitous Internet connectivity is starting to be default, in addition to on-line music
stores, music services in “the cloud” are spreading fast. The idea of these services is to pay a
monthly fee to get access to their whole multi-million music catalog. The difference to standard
on-line music stores is that music is never downloaded to a storage device, but it is only allowed
to stream from their servers.

With the possibility to access vast music archives almost anywhere and anytime it will be
essential to offer new ways to navigate and interact with these large music collections. To create
such services one of the most basic requirements is to understand how and why people perceive
two music pieces as similar, related or fit. A number of methods trying to automatically measure
“music similarity” have already been developed in the past years. However, today’s state-of-the-
art techniques do not work with the massive music collections accessible today.

The question of how to scale music similarity measures to work with millions of songs sets
the cornerstones of this thesis. In fact this thesis is set in the gap between automatic music
recommendation techniques and their commercial use, focusing on the question of how to design
a scalable system for state-of-the-art music recommendation algorithms.

1.2 Scope of the Thesis
This thesis proposes solutions to three major problems which prevent using a whole class of
standard music similarity algorithms in large scale applications for high-quality music recommen-
dation: (i) the non-vectorial music similarity features and their non-metric similarity functions
can not be clustered using traditional methods, (ii) the employed algorithms exhibit very high
hubness leading to strong imbalances in the their retrieval results, (iii) there do not exist viable
indexing solutions which can be used with the covered methods to scale the algorithms.

These problems define the key points to be solved in this thesis. This thesis does not define
a new music similarity algorithm, but it solves the identified major problems for a whole class
of existing music recommendation algorithms to scale these methods. A large scale prototype
music recommendation system is finally presented using all techniques introduced in this thesis.
We evaluate the system and show that it offers a high retrieval quality, short answer time and
works with millions of music pieces.

Although the focus of this work is clearly music similarity algorithms, its theoretical results
are not limited to music similarity algorithms. In the case of the hubness problem we explicitly
show that our method to remedy the effect, also applies for general machine learning problems.

1.3 Organization
Chapter 2 introduces the reader to the research area of music information retrieval and automatic
content-based music similarity measures. The general notion of music similarity, as used in the
music information retrieval literature, is reviewed and explained. We present the currently

2http://www.forrester.com/ER/Press/Release/0,1769,1200,00.html, visited August 12th, 2011



1.3. ORGANIZATION 3

standard and top-ranked music similarity measures which are all from a class of algorithms that
use multivariate Gaussians to represent their similarity features. We identify three problems
which prevent the algorithms from being used for high-quality music recommendations in large-
scale scenarios. These problems and the development of possible solutions form the topics of the
next chapters and the core of the thesis.

Working with Gaussian Music Similarity Models

The first problem we identify are the uncommon non-vectorial music similarity models (paramet-
ric multivariate Gaussians) and their attached non-metric divergences (Kullback-Leibler diver-
gences). Chapter 3 introduces the parametric Gaussian, their related divergences and puts that in
the appropriate information theoretic context. We show how the multivariate Gaussian centroids
of the Kullback-Leibler divergence are defined. With the centroids, any centroid-computing algo-
rithm like the standard k-means algorithm can be natively used with these non-vectorial features
and divergences. On top of that we develop a modified self organizing map algorithm which can
be used to cluster parametric multivariate Gaussians as opposed to the standard vector space
it has been developed for. The method is shown to work better than previous algorithms using
vector space approximations. A freely available, high-performance Octave/Matlab toolbox to
ease working with multivariate Gaussians is presented.

Reducing Hubs with Mutual Proximity

A general problem of recommendation algorithms using high dimensional data is identified in
Chapter 4 – hubness. Hubs are data points which keep appearing unwontedly often as nearest
neighbors of a large number of other data points. This effect is particularly visible in the
examined music similarity algorithms and in general problematic in algorithms for similarity
search. Algorithms with high hubness find the same similar objects over and over again while
never recommending certain other objects. This effect significantly degrades the performance of
retrieval algorithms. We present a method that alleviates the hubness problem while at the same
time increasing the quality of the retrieval results. The method is shown to be effective on general
machine learning databases, and on music similarity algorithms exhibiting high hubness. A highly
efficient approximation of the method which just requires a k-means clustering is introduced so
the proposed method can be used for very large collections.

Fast Search with the Music Similarity Measures

Chapter 5 introduces a filter-and-refine technique to enable searching for nearest neighbors in
sub-linear time using any of the examined music similarity measures. To achieve that we use a
modified FastMap technique to compute a vector space representation of the features. A query
is processed by first roughly filtering the collection for possible candidate nearest neighbors in
the vector space. In a second step the filtered set is re-ranked according to the original similarity
measure only using the filtered set of features. The method is shown to be very accurate and
achieves speedups by 10–40 orders of magnitude, compared to a linear scan. A US patent
(12/458,230) based on this method is pending.
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After tackling all problems preventing the use of music similarity algorithms in large
scale applications, Chapter 6 merges all methods which have been developed and presents
“Wolperdinger”, a prototype large scale music recommendation system. The Wolperdinger sys-
tem works with 2.3 million music pieces and is able to process recommendation queries in less
than a second on a standard computer.

Chapter 7 concludes this thesis. Finally Appendix A reviews three applications of content
based music similarity algorithms which have been developed in the years leading to this thesis.

1.4 Contributions
The main contributions of this thesis are introduced in the three core chapters (3, 4, 5) of this
work. They include:

• The development of a novel filter-and-refine indexing method which can be used to for fast
music similarity search in large collections. We show how the proposed method can be used
to query several million songs for their acoustic neighbors instantly while producing almost
the same results that would be returned by a linear scan over the whole database [SFW10,
SFW09].

• The development of a generalized self-organizing maps algorithm which is able to clus-
ter Gaussian music similarity features [SFWG10] using their Bregman centroids. We can
show for the first time how Gaussian music similarity features can be clustered natively
using a self-organizing map. The development of the freely available Matlab MVN (Multi-
variate Normals) toolbox open-sources the algorithms for further research. It implements
the information theoretic methods which are introduced in the thesis to easily deal with
multivariate Gaussians.

• The development of a method which alleviates the problem of hubness in high dimensional
spaces [SFSW11]. The method is called Mutual Proximity (MP) and combines mutual
object neighborhood information in a probabilistic way. We show that the method reduces
hubness while at the same time significantly increasing the retrieval quality. We show
these surprising effects on a large number of standard machine learning databases. We
also develop an approximate method of Mutual Proximity which can be used on large
collections.
We show that the standard music similarity algorithms we employ exhibit very high hub-
ness and as a result of this MP can increase their retrieval accuracy significantly without
changing the features.

All three main contributions of this thesis are required to build an industrial-strength content-
based music recommendation system – the objective of this thesis – which is finally developed
in Chapter 6.
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This chapter examines computational measures of music similarity. Section 2.1 briefly intro-
duces to the general music information retrieval research domain. It leads over to Section 2.2
which attempts to define the term “music similarity” from a music information retrieval perspec-
tive. Section 2.3 reviews related work and research. Besides discussing the state of the art and
applications, this section also examines the difference between context- and content-based music
similarity. The focus of this thesis is on algorithms for the latter one, that is content-based
music similarity measures using features computed solely the audio signal to compute similar-
ity. Section 2.4 introduces a class of de-facto standard algorithms to compute music similarity.
Section 2.5 evaluates and benchmarks three algorithms which will be used throughout this thesis.
Eight different public music collections are used to benchmark and evaluate the algorithms.

In the final section of this chapter (Section 2.6) we identify major problems with the class of
computer music similarity methods we have introduced. These problems hinder the development
of a truly scalable music recommendation system. The section discusses the individual problems
faced by the algorithms. In the next chapters we will gradually develop methods to resolve these
problems to arrive at a truly scalable music recommendation system.

2.1 Music Information Retrieval
This doctoral thesis is set in the music information retrieval research domain. One of the first
publications mentioning music information retrieval (MIR, [Kas66]) dates back as far as 1966.
In his publication Kassler proposed a special purpose programming language to describe a music
piece as a well defined program. Things have changed a lot since then as music information
retrieval has evolved into a much wider-spread research field. Hand in hand with the grow-
ing success of digital media and the new ways to process audio information, research interest
expanded significantly.

In 2003 Downie [Dow03] characterized music information retrieval as a much wider domain.
Downie distills seven basic music information “facets” defining the domain: the pitch, temporal,
harmonic, timbral, editorial, textual, and bibliographic facet. These facets describe the main
music characteristics MIR tries to extract, learn predict or classify using any information source
available. While Downie’s definition is in general still valid today, the scope of MIR expanded
certainly at least to an eighth facet: the social facet. This facet covers popularity, discussions and
opinions of music and emerged from today’s ubiquitous social networks where this information
all of a sudden could be gathered.

The ISMIR [DBC09] (International Society for Music Information Retrieval) conference is
one of the main international conferences for music information retrieval and was established in
2000. The conference is certainly a hub point for MIR research. To get a snapshot of the current
focus of MIR we show a table which lists the topics of ISMIR as they were advertised in the call
for papers for the 2011 conference1 (Table 2.1) and created a tag-cloud visualization [BBF06]
using the full ISMIR 2010 conference proceedings (Figure 2.1). Tag clouds are a simple method
to visualize the frequency distribution of keywords extracted from text. The words are resized
according to their frequency distribution in the text, i.e., words printed in large font sizes occur

1http://ismir2011.ismir.net/callforpapers.html, visited August 12th, 2011
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Figure 2.1: A Tag-Cloud representation of the full conference proceedings of the ISMIR trying
to visualize the current hot topics.

more often in the text and can be interpreted as more important than words printed in small
font. Tag clouds have been made popular by the photo sharing website flickr.com and have found
widespread use. To create the ISMIR tag-cloud we removed stop-words from the text and used
the one hundred most frequent words of the proceedings (Figure 2.1). The tag-cloud shows a
high relevance of “retrieval” and “similarity” in the ISMIR publications of 2010.

To finally put this thesis into MIR context: in terms of Downie’s facets, we extract timbral
and temporal features from music pieces to compute music similarity, in terms of ISMIR con-
ference topics this thesis develops an indexing method to build a large scale content-based music
recommendation and playlist generation system using computer music similarity methods.

2.2 What is Music Similarity?
The definition of a general similarity measure between two arbitrary music pieces is a challeng-
ing exercise as the concept of music similarity is highly manifold and subjective. However in
many scenarios where music is played, the concept of similarity is an important aspect of music
consumption. Subsequent pieces should somehow fit together. It may be music on the radio, in
a bar, at a dance event or in a concert where the whole impression should harmonize.
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MIR research topics • meta-data • user modeling • automatic transcrip-
tion and annotation of music • optical music recog-
nition • libraries • archives • digital collections
• database systems • indexing • digital rights man-
agement • content-based querying and retrieval • fin-
gerprinting •music signal processing • user interfaces
• score following and audio alignment • music rec-
ommendation •music similarity • playlist generation
• performing arts and multimedia • social tagging
systems • music summarization • automatic classi-
fication • modification and transformation of music
data • automatic composition • computational mu-
sicology • text and web mining • evaluation and an-
notation issues • methodological and philosophical
issues • social, legal, ethical, and business issues

Table 2.1: Characterizing the field of music information retrieval using the ISMIR call for papers
topic list.

In each of these settings the idea behind the selection of matching music may be different,
but still, it is there. A radio DJ may select songs according to the genre of his show, at a dance
event only music of a selected time period may be played or a department store may wish to play
ambient background music preferably with unnoticeable transitions between different songs.

An algorithm which tries to simulate that, first needs to identify core attributes of music
which describe the desired aspects. But what are these natural attributes which should be used
to describe music for computing general music similarity?

2.2.1 Music Similarity in Commercial Applications
To get a sense of what seem to be reasonable choices, at least for popular music, we first look at
three successful large commercial applications which collect music attributes to work with them.

All Music Guide
An expert source for music information is the All Music Guide2. The AMG categorizes music,
artists and bands according to main attributes that are defined by music experts. They categorize
music pieces into genre (rock, pop, electronic,...), style (contemporary, political, psychedelic,...),
mood (rousing, bitter, playful,...) and theme (late night, road trip, relaxing,...). Of course also
standard information like the decade, chart positions, artist, band and composer information
is stored. The guide started 1995 as a small site for music fans to read more about the music
they like. Today the AMG is licensing their music information to large companies who need this
meta-data. MIR research is also often (re-)using their mature taxonomies [WL02, PC00, BEL03,

2http://www.allmusic.com/, visited August 12th, 2011
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EWBL02]. Recently they have engaged in creating a music discovery engine (Rovi3) where their
own data is used to power a recommendation engine.

Pandora Internet Radio
Similarly to this, the “Music Genome Project” operated by Pandora Internet Radio4 defines its
own attributes to classify music. However its attributes5 are much more detailed than the ones
from AMG and include music structure, rhythm, tonality, instrumentation, feelings, influences,
lyric content, vocals and many more. The individual attributes are hand-picked by music experts
and need to be set manually for each music piece. That, unfortunately, does not scale well.
Having an individual data vector of music attributes for every music piece is the basis for Pandora
to compute music similarity. In their case it is used to stream personalized radio.

Last.fm
Last.fm6 is a gigantic source of unstructured attributes each characterizing artists and their
music. It is an Internet radio station offering personalized radio streams. It works by collecting
arbitrary tags for artists and music pieces from its community. The tags are used to dynamically
generate personalized music streams for their users. To get a feeling which tags are mainly
used we created Figure 2.2 which shows a tag cloud [BBF06] visualization. We generated the
figure from a Last.fm tag dataset of seven million artist tags. The data-set was created in
2007 [GLA+09] and is available freely on the Internet.7

Looking at the figure it can be seen that besides decades (00s, 90s, 80s, 70s, 60s) or lan-
guage/origin (French, Finnish, German, Polish) clearly genre names (rock, jazz, indie, elec-
tronic, etc.) dominate the plot. Last.fm data is widely used in works examining music similar-
ity [ELBMG07, Lam08, KPSW07].

2.2.2 Music Similarity in Research
Similarly to the commercial applications discussed in the previous section, the concept of music
genres as a basic aspect of music similarity is prevalent in the research literature too. Aucouturier
and Pachet [AP02a] and Tzanetakis et al. [TC02] were one of the first to use a (coarse) musical
genre taxonomy to evaluate their music similarity measure. Typical musical genres which they
used were: Classical, Country, Disco, Hip-Hop, Jazz or Rock. Music from these basic genres
is usually clearly separated in terms of its sound. The observation that musical timbre is a
dominant factor also led to the development of music similarity measures based solely on music
timbre, one of the first being Logan [Log00] in 2000. Today almost all common music similarity
measures still use a timbre component similarly to the one introduced by Logan (see Section 2.4).

Besides musical timbre another important aspect defining the notion of a musical genre is
rhythm. Work in this direction has for example been done by Pampalk et al. [PFW05] or

3http://www.allrovi.com/, visited August 12th, 2011
4http://www.pandora.com/, visited August 12th, 2011
5http://en.wikipedia.org/wiki/List_of_Music_Genome_Project_attributes, visited August 12th, 2011
6http://www.last.fm/, visited August 12th, 2011
7http://musicmachinery.com/2010/11/10/lastfm-artisttags2007/, visited August 12th, 2011
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Figure 2.2: A tag cloud visualization of a publicly available dataset of seven million Last.fm tags.
Tags on Last.fm can be chosen freely. The tag-cloud visualization plots the top 150 tags, arranged
in alphabetical order. The font size is determined by the term frequencies of the individual tag.
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Gouyon et al. [GDPW04]. They use music pieces from classical dances (Waltz, Rumba, Foxtrot,
Salsa, etc.) to evaluate the performance of their algorithms. Rhythm is a crucial element in
non-western music where musical genres are often predominantly defined by a certain repeating
rhythmic pattern. This is for example the case with Malay music [NDW05] or traditional Crete
(Greek) music [HS09]. In these cases rhythm is the most important aspect to identify musical
genres.

In a growing number of publications automatic mood and emotion detection is used to com-
pute similarity between two music pieces. This is done by analyzing the raw audio signal (see
Liu et al. [LLZ03] or Li et al. [LO04]) as well as by using information like the music lyrics (see
Laurier et al. [LGH08]). Hu et al. [HBD07] built a music mood ground-truth set. Usually the
basic moods which are used are based on the two dimensional valence-arousal graph from Rus-
sell [Rus80]. Methods to classify music emotions typically use the adjective groups (fearful, sad,
quiet, relaxing, happy, amazed,...) introduced by Farnsworth [Far58].

Other methods which have been used to construct a music similarity measure take into
account cultural and context information about music. This information can be mined from
web-pages [KPW04, CF00] or social networks [SPKW06]. Music context information can include
the artist/band biography, news, trivia, lead singer and band member information, lyrics, the
music video or even fashion linked to a certain type of music.

2.2.3 Common Definition

Looking at all these different views on what defines computational music similarity, we try to
distill common main aspects. Although all introduced taxonomies (in commercial applications
as well as in research) seem to differ a lot, nevertheless a single common main music taxonomy
is clearly visible. The notion of musical genres seem to be the dominant similarity aspect for
popular music. Its notion is found in a large number of the presented works. If two music pieces
are from the same genre, they are likely to have more similarity than two pieces from different
genres. However as we have seen, a music genre can be defined by an array of features: musical
style, instrumentation or even by the typical sound of a decade. This makes the concept of
genres rather ill defined as Aucouturier and Pachet [AP03] remarked. Still genres appear to be
an important and widely accepted concept to describe similar music.

A second main aspect defining the term computer music similarity can be derived from
context information. If two music pieces share similar context information like the artist, decade,
instruments or both even have a similar music video they can be considered similar.

In the small survey a third interesting facet of music similarity emerged. Feelings, mood and
emotions coupled to music can seem to play an important role defining the similarity of two
music pieces. Sometimes feelings and mood can even be found again in musical sub-genres like
in “Psychodelic Rock” or “Happy Hardcore” (an electronic music sub-genre).

Based on these observations we define the term Computational Music Similarity Measure
to refer to a method which is capable of computing a similarity value between two music pieces
according to their musical genre, context and mood. A method for computing a similarity value
between two music pieces may use any possible information available.
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A mixture of the three ingredients which we distilled would likely define a good path towards
a general computer music similarity measure. This thesis focuses on music similarity which is
optimized to return similar songs from the same genre and develops a scalable method for that.
More specifically, the similarity measures we will use are based on models of timbre and rhythm.
Context is hard to assess because relevant information is usually not available. Aspects of mood
could be captured by our timbre and rhythm models.

2.3 Related Work
There is high interest in creating a meaningful music similarity algorithm, as numerous possible
applications require one to work:

• Services to automatically recommend new unknown music to listeners, e.g., in a streaming
service, an on-line music store or even a small personal music device to automatically create
playlists on-the-go [Log02, AP02b, AH06, FSGW08].

• Methods to simplify retrieval of relevant similar audio files from expert databases, like
Pampalk et al. [PHH04] who propose a system to organize drum sample libraries.

• Methods to automatically generate meaningful maps of music collections [Pam03, KSPW07,
SFWG10] to create better ways to browse music.

• Automatic classifcation of unknown music according to specific learned labels [ELBMG07,
TC02, MF04]

• Duplicate or near duplicate [HK03, CS07] detection of music pieces.

All these scenarios use or implement a similarity algorithm. Based on their goal and the data
they need to operate on, the algorithms may differ. To discuss the main algorithms which are
used to compute music similarity, we first distinguish between context- and content-based music
similarity algorithms.

2.3.1 Context-based Music Similarity
Although only vaguely defined in the literature, the term “context-based features”, “cultural
features” and “community meta-data” are commonly used interchangeably. We use the term
context-based music similarity to denote a music similarity measure which does not use informa-
tion which is extracted in some way from the audio file itself, but rather uses external sources.
Sources which are used in context-based music similarity methods are the Web, social networks,
expert or survey data. Context-based methods do not require the audio file and are able to
capture a multitude of information about the music pieces. However they suffer from a few
shortcomings which need to be considered before using such an algorithm (see Celma [Cel06]):
(i) The “cold start problem”. This problem arises for newly released songs or new artists/bands,
where usually not enough (or any) information for a method to work properly can be found.
That is, for newly released songs there are usually no discussions, music reviews or websites with
information an algorithm could process. (ii) The “long tail problem”. The “long tail” includes
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unknown artists and songs where barely any information can be found. The sparsity of infor-
mation leads to the effect that only songs/artists where sufficient information is available, i.e.
popular songs/artists, are recommended. The “long tail” is never recommended. This effect is
sometimes also referred to as a “popularity bias”.

While context-based methods can capture a multitude of different information criteria, but
suffer from the described problems, content-based methods (Section 2.3.2) working solely with
the audio signal have the inverse problem. These methods can process any music piece, but can
not extract all the desired information from the audio signal. This fact led to many works which
tried to combine the two methods to profit from their respective advantages (see for example
Knees et al. [KPSW07] or Aucouturier et al. [APRB07]).

In the next paragraphs we try to give an overview of the different methods which are used in
context-based music similarity algorithms. The methods are grouped by the data source which
is used. A comprehensive study on context-based methods for music similarity estimation was
published by Schedl and Knees [SK09].

Web

Methods which use data from the Web need to infer knowledge about music from unstructured
data. Usually these methods work on top of a Web search engine or need to implement their
own focused crawler to retrieve data. If a search engine is used, usually a query for the artist
name together with a key phrase like “music review” [WL02] or “music genre style” [KPW04] is
performed. Standard text retrieval methods, i.e., the bag-of-words representation and standard
tf · idf weighting (term frequency · inverse document frequency, see Baeza-Yates and Ribeiro-
Neto [BYRN99a]) is used.

Whitman and Lawrence [WL02] use data from the Web to learn artist similarities. To do so
they use a list of 400 artists which they collected from a Peer-to-Peer network (see paragraph
below), they search for the artists names and the key phrase “music review” in a search engine
and crawl the top 50 retrieved Web-pages. Part-of-Speech (PoS) tagging and standard tf · idf
are used to create an artist similarity matrix. Other methods use co-occurrence models to infer
knowledge about artists. Schedl et al. [SPKW06], for example, use Web co-occurrence analysis
to predict the music genre of an artist. Usually Web analysis is limited to extracting band or
artist information, as information about individual songs is very sparse.

Lyrics

Song lyrics are a possible source to obtain information about individual music pieces. Logan et
al. [LKM04] were one of the first to try to use lyrics for artist similarity measurements, but did
not succeed; simple content-based methods outperformed their method, which just used the song
lyrics. They propose to mix lyrics similarity with content-based information as both methods
showed their strength in different cases. Mahedero et al. [MMC+05] find three special aspects
where music lyrics analysis outperforms other methods: music lyrics are important if (i) the
language of a music piece needs to be identified, (ii) the general song theme is of interest and
(iii) music lyrics are useful to detect cover pieces of songs. Using lyrics to identify the mood of
music pieces is proposed by Laurier et al. [LGH08].
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Annotations

Methods which rely on manually annotated data to compute context-based music similarity were
already discussed in the introductory section about music similarity. Crowd or explicit expert
data is required in services using annotation data. Popular examples are the All Music Guide
(experts), last.fm (crowd) and Pandora (experts). The tags from last.fm are openly accessible
and have found widespread use in research. For example, Green et al. [GLA+09] implement a
collaborative-filtering method using last.fm data to recommend music. Their algorithm compares
weighted artist tag-clouds to define an artist similarity measure.

As it is very difficult for researchers to get manual music annotations it was proposed to use
games to get users to tag music. One of the first games was Tagatune by Law et al. [LVADC03]
which plays a song to two users. The users are asked to describe the song and then they have to
figure out (based on their descriptions) if they are both listening to the same tune.8

User Collections/Data

To retrieve user collection data, usually Peer-to-Peer (P2P) networks with users sharing their col-
lections are employed. A number of approaches using user collection data from P2P networks have
been published using the (now closed) OpenNap network (see for example [WL02, BLEW04]). A
more recent system developed by Shavitt and Weinsberg [SW09] tries to create an artist and song
similarity measure using data from the Gnutella file sharing network. They build a user-song
relation network from the crawled data to compute the similarities.

Besides P2P networks, co-occurrence analysis of user-generated music playlists data (e.g.,
downloaded from the “Art of the Mix”9 homepage) has also been used for music similarity
research [CCKB06].

2.3.2 Content-based Music Similarity
Content-based music similarity measures only use the audio signal to build similarity models.
The scheme of a content-based music similarity measures along with an in-depth look into three
specific algorithms is presented in Section 2.4. The following paragraphs give an overview of
algorithms computing content-based music similarity. We group the methods by the type of
features they extract.

What is common to all these methods is that they are often referred to as “bag of frames”
methods as their music features are computed independently from short audio slices (c.f., “bag
of words” approaches in classic text information retrieval). As music happens in time, these
methods potentially ignore a lot of relevant information. So far no satisfactory ways of modeling
temporal aspects of music have been found.

Music Timbre

Presumably the first method for computing content-based music similarity was developed by
Logan and Salomon [LS01]. They use the Mel frequency cepstrum coefficients (MFCCs) to com-
pute music similarity. MFCCs have their origin in speech processing (see for example Ganchev

8http://www.gwap.com/gwap/gamesPreview/tagatune/, visited August 12th, 2011
9http://www.artofthemix.com, visited August 12th, 2011
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et al. [GFK05]). They are a noise-robust, compressed representation of the spectrum. Logan
proposes to compute 13 MFCCs for every 26ms of audio (with a hop size of 13ms). A k-means
clustering of the MFCC vectors defines the so called signature of each analyzed music piece. As
solely an average spectrum of MFCCs is used in the algorithm, methods based of this idea are
said to model the overall music timbre of a song. The earth movers distance is used to compute
the similarity between two music pieces.

A number of algorithms were already published before Logan and Salomon to find or identify
similar audio signals (e.g., Wold et al. [WBKW96] or Feiten et al. [FG94]). Logan and Salomon
however were presumably the first to investigate the specific question of the similarity between
two music pieces.

Methods based on the ideas of Logan and Salomon were developed by Aucouturier and
Pachet [AP02a]. They train Gaussian Mixture Models (GMMs) on MFCC vectors to model the
similarity features. To compute similarity between two GMMs they use a Monte-Carlo sampling
method which randomly samples from one GMM to compute the likelihood that the samples
could have been generated from the other GMM.

Mandel and Ellis [ME05] propose a very straightforward variant to compute music similar-
ity. Again based on Logan/Salomon [LS01] they use MFCCs, but contrary to Aucouturier/Pa-
chet [AP02a] who train a GMM, they only estimate a single multivariate Gaussian model on the
MFCC vectors. That way they can use closed from solutions of the Kullback-Leibler divergence
to compute the similarity between two music models. Besides being very fast compared to older
algorithms, their method also outperformed other music similarity measures in terms of quality.
It is since then one of the de-facto standard methods to compute music similarity. We will discuss
the algorithm in Section 2.4.2.

Rhythm

The beat-spectrum is an early algorithm to model (and compare) rhythm in music [FU01]. It
works in three steps: (i) the audio is transformed into an MFCC representation, (ii) all frames
are compared and their pairwise distances are recorded in a distance matrix and (iii) the beat
spectrum is found by finding periodicities in the similarity matrix using auto-correlation.

An approach which uses rhythm features to compute music similarity was published by Pam-
palk et al. [PRM02a]. They compute so called rhythm- or fluctuation patterns. Fluctuation
patterns are a two dimensional representation of the periodicities found in the audio signal for
each frequency band. They use the Sone scale, a subjective loudness measure originally pro-
posed by Stanley Smith Stevens [Ste36], and compute a fast Fourier transform (FFT) on 128
Sone-frames to find the periodicities in the spectrum. To compute the similarity between two
fluctuation patterns the squared Euclidean distance is computed.

Pohle et al. [PSS+09] improve the fluctuation patterns and develop the so called onset pat-
terns. In comparison to the fluctuation patterns, onset patterns (i) use the Cent- instead of the
Sone-scale, (ii) emphasize onsets before computing the onset pattern for a song and (iii) represent
the periodicities on a logarithmic scale. Their method is shown to outperform the fluctuation
patterns on the standard “Ballroom dances” dataset.
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Multiple Features

Besides algorithms explicitly modeling rhythm and timbre, a number of music similarity measures
combine multiple features to improve their performance.

Tzanetakis and Cook [TC02] create a similarity measure partly based on timbre, rhythm and
pitch features so that a similarity signature of each music piece is a 30-dimensional vector. The
timbre part of the feature vector is computed from the MFCC representation, the rhythm features
use beat histogram [TEC01] features and the vector elements describing the pitch are computed
using a multi-pitch detection algorithm. Tzanetakis and Cook are one of the first to propose a
similarity function combining various aspects (predominantly musical timbre and rhythm) into
a single music similarity feature. Their similarity algorithm is integrated in MARSYAS [TC99]
an open-source framework for audio processing where it has been enhanced since then.

Similarly to Tzanetakis and Cook, Neumayer et al.[NLR05] also mix timbre and rhythm fea-
tures in their music similarity measure. Their rhythm features are derived from the Fluctuation
Patterns, the musical timbre features are statistical descriptors computed from a Bark spectrum,
another psychoacoustically motivated spectrum.

The success of Mandel and Ellis’s work [ME05] inspired a number of derivative methods which
improve the measure but keep the general idea, to use MFCCs and a single Gaussian model. A
successful method was published by Pampalk [Pam06]. The similarity method combines the
(rhythm-) fluctuation pattern similarity with the single Gaussian timbre features of Mandel and
Ellis. This algorithm variant is also published as an opensource Matlab toolbox [Pam04] (see
Section 2.4.3). Another derivative method is the algorithm published by Pohle et al. [PSS+09].
By improving the rhythm component, the similarity measure could be improved substantially.
The method of Pohle et al. is discussed in Section 2.4.4.

A method which currently competes with the single Gaussian representation of music sim-
ilarity features was proposed by Seyerlehner et al. [SWP10] in 2010. They call their method
Block-Level Features/Similarity. The Block-Level features consist of a number of different music
features, describing musical timbre, rhythm, onsets or toneness. What sets this method apart
from previous approaches, is that each of the features is iteratively computed for a predefined
audio block length instead of very short frames as it has been done in most methods before.
The individual feature blocks which are computed for each time-step are aggregated into a single
block for each music piece.

2.3.2.1 Summary

The methods by Pohle et al. [PSS+09] and Seyerlehner et al. [SWP10] are at present seen as two of
the top performing music similarity measures according to the yearly music information retrieval
evaluation exchange (MIREX, [Dow08]). The MIREX10 is a community-based framework for the
formal evaluation of Music Information Retrieval systems and algorithms, similar to TREC11

in text retrieval research. Since 2006 (with the exception of 2008) there has been a yearly
Audio Music Similarity and Retrieval (AMSR) task, which evaluates music similarity measure.
Contrary to all other evaluations, this evaluation task is performed by anonymous human listeners
who rate music playlists generated by the different algorithms.

10http://music-ir.org/mirex, visited August 12th, 2011
11http://trec.nist.gov/, visited August 12th, 2011
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Year Team Ranked #1 Algorithm
2006 Elias Pampalk (EP) [Pam06]
2007 Pohle-Schnitzer, (PS) [Pam06]

George Tzanetakis (GT) [TEC01]
2009 Pohle-Schnitzer (PS) [PSS+09]
2010 Seyerlehner-Schedl-Pohle-Knees (SSPK) [SWP10]

Pohle-Schnitzer (PS) [PSS+09]

Table 2.2: MIREX: Music Information Retrieval Evaluation eXchange - Audio Music Similarity
and Retrieval (AMSR) results: top ranked algorithms. There was no AMSR task in 2008

Table 2.2 lists the top-ranked teams and algorithms of the MIREX AMSR evaluation task
starting with 2006. We will use the MIREX team name acronyms (in brackets) to refer to a
particular allgorithm in this thesis.

2.4 Algorithms
This section presents the design of a generic music similarity computing algorithm before describ-
ing the three similarity computing algorithms which will accompany us throughout the thesis.
First we introduce the de-facto standard music similarity computing algorithm by Mandel and
Ellis [ME05] (hereafter denoted with ME). ME defines a commonly used, straightforward and
still powerful algorithm to compute music similarity. It is the basis of the other two algorithms:
the MIREX 2006 top performing algorithm by Elias Pampalk (denoted with EP) and the MIREX
2009/2010 top performing algorithm by Pohle-Schnitzer (hereafter denoted with PS).

2.4.1 Generic Music Similarity Algorithm
A generic music similarity algorithm typically is defined by two functions: (i) the Feature Ex-
traction and (ii) the Similarity function.

To use the Similarity function first the music pieces need to be analyzed to extract the
features. Typically after the Feature Extraction these features are stored to be reused. Usually
the features are computed in four generic steps:

• Decoding: The encoded music file (MP3, AAC) is decompressed and transformed to its
discrete time-domain representation (see Figure 2.3a). In the time-domain representation
audio is described by a number of uniformly spaced, discrete real numbers x(t) (samples)
at each specified time step t. The number of samples per second is called the sample rate
of the audio. Standard sample rates which are used in music similarity algorithms are
22 050 Hz – 44 100 Hz in a mono-channel signal.

• Frequency Domain Representation: A Short-Time Fourier Transformation (STFT) com-
putes the discrete frequency-domain representation of the audio. In the frequency-domain
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Figure 2.3: Visualization of the typical Feature Extraction steps of a music similarity algorithm
showing the various spectrum representations of a 10 s audio snippet.

the signal is represented by the spread of its frequencies fb(t) over a given number of fre-
quency bands b per analyzed time interval t (window size). Music similarity algorithms
typically use 1024− 2048 samples per STFT. In most cases the power spectrum represen-
tation is computed, which represents the signal with the energy per frequency-band and
time interval (see Figure 2.3b).

• Psychoacoustic Modeling: The frequency spectrum computed in the previous section does
not take into account any characteristics of the natural human ear. That is why sim-
ilarity algorithms use psychoacoustically motivated representations prior to computing
the similarity features. Common representations which are used include MFCCs or the
Sone/Bark/Mel/Cent frequency scales.

• Feature Computation: The final music similarity model (or signature) are computed from
the representation in more or less complex ways. We will describe three different techniques
in the next sections.

To compute an estimate of the similarity between two songs, a music similarity computing
algorithm also defines a Similarity function. To find the music pieces most similar to a given
song, in the simplest case a retrieval algorithm linearly scans and compares all music pieces to
the query according to the similarity function.

2.4.2 Mandel-Ellis (ME)
Mandel and Ellis [ME05] published their music similarity measure in 2005. It uses very simple
features which still seem to capture some notion of general (timbre) music similarity. In the
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Figure 2.4: Schematic plot of the non-uniformly spaced triangular filterbank for the original
spectrum (x-axis) to obtain a Mel-wrapped spectrum. It is also possible to obtain a Mel-wrapped
spectrum from interpolation of the power spectrum using an equally spaced filterbank (y-axis).

feature extraction phase, it first decodes the music to a mono 22 050 Hz signal. A window size
of 1 024 samples with a hop size of 512 samples is used to compute the power spectrum of the
signal (c.f. the Frequency Domain Representation step). The power spectrum is transformed to
20 MFCCs per frame. To compute the MFCCs the power spectrum is converted to a 36-band
Mel spectrum using a non-uniformly, Mel-spaced triangular filterbank in the original spectrum.
Figure 2.4 schematically depicts this procedure. Figure 2.3c shows a Mel-spectrum computed
from a 10 s music snippet. The filterbank output is cosine transformed using a Discrete Co-
sine Transform (DCT) to obtain the MFCC representation (Figure 2.3d). A popular reference
implementation to compute MFCCs was published by Slaney [Sla93].

To finally compute the song model features from the MFCCs, a single multivariate (20-
dimensional) Gaussian X v N (µ̂, Σ̂) is estimated from the MFCC vectors mi of each music
piece.

µ̂ = 1
n

n∑
i=1

mi, Σ̂ = 1
n

n∑
i=1

(mi − µ̂)(mi − µ̂)T . (2.1)

A song is thus modeled by a 20-dimensional mean vector µ̂ and a 20× 20 covariance matrix
Σ̂. To compute a similarity value between two Gaussians the symmetrized Kullback-Leibler
divergence is used. The Kullback-Leibler divergence (KL) has a closed form for two d-dimensional
Gaussians X1,2. It is defined in Chapter 3, Section 3.4.1.1. The symmetrized Kullback-Leibler
divergence (SKL) which is used by ME to estimate timbre music similarity (dt) is defined as:

dt(X1, X2) = SKL(X1|X2) = 1
2KL(X1|X2) + 1

2KL(X2|X1). (2.2)
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Section 3.4.1.2 in Chapter 3 shows a simplified closed form solution.
ME shows a very stable performance in classification experiments and listening tests (c.f.

Table 2.2). The feature extraction and similarity estimation can be implemented quite efficiently.
Unfortunately the SKL is not a metric distance and the similarity features are non-vectorial,
which makes it difficult to use the features and measure in standard methods for clustering or
indexing. We evaluate ME in Section 2.5. ME has been improved in many further works, two of
which are presented next.

2.4.3 Elias Pampalk (EP)

An algorithm that builds on ME is Pampalk’s method [Pam06]. A full Matlab implementation
is available on-line in the Music Analysis Toolbox (MA Toolbox) [Pam04].

EP combines the single Gaussian musical timbre features of ME with the fluctuation patterns
(and features computed from these) to include rhythm information in the similarity measure.
The fluctuation patterns are computed from the Mel spectrum of a song. That way it fits nicely
into the Feature Extraction process of ME.

Fluctuation Patterns are computed for every 3 seconds of music. This is done by computing
an FFT on the corresponding 3s segment in the Mel spectrum to get an amplitude modulation
frequency representation. The rows of the resulting matrix, FP = (fp(i, j)), correspond to the
frequency bands, the columns to the modulation frequencies ranging from 0-10Hz. A value in the
matrix describes the strength of a repeating fluctuation in a frequency band at a given periodicity.
The modulation frequencies are weighted and filtered to arrive at the final Fluctuation Pattern.
The pattern at the median is selected as representative Fluctuation Pattern for the whole music
piece. The similarity dFP between two Fluctuation Patterns FP1,2 is computed by a simple
pointwise squared Euclidean distance:

dFP (FP1, FP2) =
∑
i

∑
j

(fp1(i, j)− fp2(i, j))2
. (2.3)

For the rhythm similarity measure two additional scalar rhythm descriptors are derived from
the fluctuation patterns: “Bass” (b, total periodicities in the two lowest frequency bands) and
“Gravity” (g, describes the most dominant modulation frequency by computing the center of
gravity of the Fluctuation Pattern matrix columns). The similarity in terms of Bass (dFPb) and
Gravity (dFPg) is defined using the absolute difference:

dFPg(FP1, FP2) = |g1 − g2|, dFPb(FP1‖FP2) = |b1 − b2|. (2.4)

To linearly combine all rhythm similarities, EP normalizes the individual distances using
static (precomputed) normalization values to zero mean and unit variance. The ME musical
timbre similarity (weighted with 70%) is then linearly combined with the FP rhythm similarity
(weighted 30%) using static normalization values which were precomputed on training collections.
The linear combination EP used to compute the similarity between two models m1 and m2 is
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defined as [Pam06]:

dEP (m1,m2) =0.7 exp(−dt(X1, X2)/450) + 0.7950)/0.1493+ (2.5)
0.1 (dFP (FP1, FP2)− 1688.4)/878.23+
0.1 (dFPg(FP1, FP2)− 1.2745)/1.1245+
0.1 (dFPb(FP1, FP2)− 1064.8)/932.79.

The static normalization values (“magic numbers”) are a weak point of the EP method,
as the precomputed numbers may not fit for arbitrary collections. In Chapter 4 we present a
much better way to do the linear combination. As EP extends the method ME with a rhythm
component it has the same problems like ME when it comes to reusing the features in clustering
or indexing methods. EP is evaluated in Section 2.5.

2.4.4 Pohle-Schnitzer (PS)
Similarly to EP, PS combines a timbre and rhythm component into a single general music sim-
ilarity measure. The method is also closely related to ME and EP as it also uses the single
Gaussian modeling to represent its features. PS uses a rhythm component which improves the
fluctuation patterns used in EP. PS was top-ranked in the MIREX 2009 and 2010 evaluations
(see Table 2.2).

Rhythm

To compute the rhythm features (called onset coefficients), PS performs the following steps:
1. From the STFT (using a 15.5ms window size) a cent-scaled representation of the STFT

spectrum is computed (with 85 bands, each band spaced 103.6 cents).

2. To emphasize onsets, the sliding mean over 0.25ms is subtracted from each frame of the
cent-scaled spectrum, which is then resampled from 85 to 35 bands.

3. As in the fluctuation patterns (see Section 2.4.3), an FFT is used on a 2.63 s window (zero
padded to 6 s) to detect periodicities. Unlike with FPs, the periodicities are represented
on a log-scale. To do that a log-filterbank is applied. The result, a two-dimensional matrix
(36× 25), is called onset pattern.

4. In the next step the so called onset coefficient representation is computed by applying
a DCT on each onset pattern, discarding higher-order coefficients. From the periodicity
dimension eight (0–7), in the frequency dimension three (0–2) coefficients are kept.

5. Finally all onset coefficients of a song are summarized by estimating a single Gaussian
representation OC from the features. Thus the rhythm features use the same representation
like ME uses for its music timbre model (Section 2.4.2).

To compare two onset coefficient signatures OC1,2, PS uses a Jensen-Shannon divergence
approximation (JS, see Chapter 3, Section 3.4.1.3), another variant of symmetric Kullback-
Leibler divergences:

dr(OC1, OC2) = JS(OC1|OC2). (2.6)
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Timbre

The timbre component consists of three sub-components which are concatenated into a large
vector. The sub-components are computed for each audio frame of 26ms length: (i) 16 MFCC
coefficients (ii) 16 spectral contrast coefficient values [JLZ+02] and (iii) the frame’s harmonic
and percussive portions, computed according to Ono et al. [OMKS08].

All timbre vectors which are computed for a music piece are summarized by estimating a
single Gaussian timbre model T . As similarity function the Jensen-Shannon approximation (JS,
see Chapter 3, Section 3.4.1.3) is used:

dt(T1, T2) = JS(T1|T2). (2.7)

Similarity

To compute overall similarity PS uses, similarly to EP, a linear combination of the rhythm
(dr) and timbre (dt) components, each component weighted with 50%. To linearly combine
the two measures, PS computes the full similarity matrix for each measure (using the Jensen-
Shannon approximation as similarity measure for both components) and normalizes each row of
the distance matrix using z- (or standard-score) normalization. Since this row-wise normalization
yields a non symmetric measure, it is symmetrized again by averaging both distance pairs. For
now we denote this normalization technique with z():

dPS(m1,m2) = 0.5 z(dt(T1, T2)) + 0.5 z(dr(OC1, OC2)). (2.8)

The normalization technique to linearly combine similarity measures in PS is a preliminary
variant of the probabilistic method for distance normalization we will introduce in Chapter 4.
We will show that this method has applications with beneficial effects beyond music similarity.

2.5 Evaluation
This section introduces evaluation strategies and public collections which we use to evaluate the
performance of the three introduced computer music similarity measures. The collection and
methods to evaluate the similarity measures are used throughout the thesis.

As music similarity is a very subjective concept, the best way to evaluate the performance
of an algorithm are of course listening tests. In such tests listeners would have to manually rate
the similarity between two songs based on their subjective feelings. Such tests are, for example,
done in the yearly MIREX AMSR evaluations, which we have already discussed in Section 2.3.2.
Unfortunately it is costly and difficult to conduct listening tests. To measure the quality of
a music similarity algorithm it is therefore common to conduct automatic genre classification
experiments. These experiments only require a collection where each song is labeled with a
genre. In Section 2.2 we have already shown that the musical genre is a prevalent attribute to
define the similarity of two music pieces. A convincing argument for automatic genre classification
experiments was made by Pohle [Poh10] who has shown a very strong correlation between the
similarity ratings users assigned in listening tests, and the genres of the songs.
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Leave-One-Out Classification

To perform automatic genre classification experiments, commonly a leave one out k-nearest
neighbor classification experiment is done. In such an experiment:

1. the k-nearest neighbors for each song in the collection are computed,

2. for each song its class/genre is determined using a majority vote in the k nearest neighbors
(if a tie is detected, the first nearest neighbor decides the class),

3. if the determined class matches the actual class of the song, the song was classified correctly,

4. the average number of all correctly classified songs is computed and called k-nearest neigh-
bor classification accuracy.

We denote the k-nearest neighbor classification accuracy with Ck. Consistently high genre
classification accuracies on multiple different collections point to a high-quality music similarity
measure.

Artist Filter

In addition to computing the raw classification accuracy, Pampalk et al. [PFW05] propose to use
an “artist filter” (AF) in all genre classification experiments to prevent songs by the same artist
from appearing in both the training and test sets. Pampalk et al. argue that without using an
artist filter, algorithms focus on identifying artists instead of general music similarity. We have
extensively studied the effects of artist filters on very large music databases [FS10] and follow our
recommendation to conduct the genre classification experiments with an artist filter. We use an
artist filter for the collections where artist information is available and adopt the leave-one-out
classification experiments: before computing the nearest neighbors for each song x (Section 2.5,
step 1), we filter the database from songs having the same artist as x.

2.5.1 Collections
To evaluate the computer music similarity algorithms we use eight public different music collec-
tions. The collections will be reused and referenced throughout the thesis in further tests and
evaluations to improve or point at problems in algorithms.

To make the evaluation reproducible all collections are standard collections which have already
been used in the literature and are in most instances freely available for research. The collections
are characterized in the following paragraphs by listing their size, structure, genres and citing
the relevant publications. If applicable, a location to download the files is given. Based on their
genre the eight collections can be separated in two groups:

1. General (commonly used) genres: ISMIR 2004 Collection, GTzan, Homburg, 1517 Artists

2. Genres strongly related to rhythm: Ballroom Dances, Cretan Dances, Latin Music
Database, Popular Rhythms.

A good music similarity algorithm should have high classification rates in both groups.
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ISMIR 2004 Collection
Training Set
Songs 729
Genres metal_punk (45/8), pop_rock (101/26), electronic (115/30), clas-

sical (320/40), world (122/19), jazz_blues (26/5).

Full Set (Training & Development)
Songs 1458
Genres metal_punk (90), rock_pop (203), electronic (229), classical

(640), world (244), jazz_blues (52).

The ISMIR 2004 collection is one of the most widely used music collections to evaluate music
similarity algorithms. The collection was created for the genre classification contest of the ISMIR
2004 conference where it still can be downloaded from the website.12 It was subsequently used,
for example, by Holzapfel et al. [HS09], Pohle et al. [PSS+09] or Seyerlehner et al. [SWP10].
The collection is split in a training and a development set, as it was originally introduced as a
benchmark collection to evaluate automatic genre classification algorithms. It is notable that
the genre “classical” comprises 43.9% of the collection.

As it is done in a number of other publications, we will use the ISMIR 2004 collection in two
separate configurations: in a training- and a full (training and development) configuration.

GTzan
Songs 1000
Genres country (100), rock (100), reggae (100), blues (100), disco (100),

hiphop (100), jazz (100), pop (100), classical (100), metal (100).

The “GTzan” collection was assembled in 2002 by George Tzanetakis [TC02]. It consists of 1 000
audio tracks (each 30 s length) evenly spread over 10 music genres. According to Tzanetakis,
the files are collected from a number of different sources (including CDs, radio and microphone
recordings). “GTzan” is available freely from the Marsyas webpage13. The dataset was for
example used by Lidy et al. [LR05] or Panagakis et al. [PBK08].

Homburg

Songs 1886
Genres funksoulrnb (47/39), alternative (145/121), rock (504/448),

raphiphop (300/210), folkcountry (222/177), blues (120/80), elec-
tronic (113/97), jazz (319/214), pop (116/106).

The “Homburg” [HMM+05] collection consists of 1 886 songs. Each music piece is only 10 s,
which is quite short. The short length is sometimes problematic for algorithms trying to estimate
rhythm features. The music snippets are available for download on the website of the Artificial
Intelligence Group of the University of Dortmund14.

12http://ismir2004.ismir.net/genre_contest/index.htm, visited August 12th, 2011
13http://marsyas.info/download/data_sets, visited August 12th, 2011
14http://www-ai.cs.uni-dortmund.de/audio.html, visited August 12th, 2011
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1517 Artists
Songs 3180
Genres Soundtracks & More (150/72), R&B & Soul (175/112), Classi-

cal (125/46), Religious (172/71), Country (187/102), Easy Lis-
tening & Vocals (175/98), Folk (185/98), HipHop (155/87),
Comedy & Spoken Word (134/68), New Age (175/82), Rock
& Pop (181/117), Reggae (172/83), Children’s (164/74), Blues
(186/100), Jazz (177/103), Alternative & Punk (182/116), Latin
(163/85), World (158/76), Electronic & Dance (164/92),

The “1517 Artists” collection was introduced by Seyerlehner et al. [SWK08, SWP10]. It consists
of 3 180 freely available songs from 1 517 artists. Each song is assigned to one of the 19 genres.
It is notable that there is a non-music genre included: Comedy & Spoken Word. The dataset is
available freely from Seyerlehner’s website15.

Ballroom Dances
Songs 698
Genres Quickstep (82), Rumba (98), Samba (86), VienneseWaltz (65),

Waltz (110), Jive (60), ChaCha (111), Tango (86).

The “Ballroom Dances” collection was introduced by Gouyon [GDPW04]. It is a collection with
music pieces assigned to classical ballroom dance genres. Each music piece has a duration of 30 s.
The collection was subsequently used for the ISMIR 2004 rhythm classification contest, where it
can be downloaded16.

Cretan Dances
Songs 180
Genres sous (30), mal (30), pent (30), syrt (30), kal (30), kont (30).

This collection consists of six different traditional dances commonly encountered on the island of
Crete (Greece). The genres are predominantly differentiated by their main rhythmic elements.
The collection was created by Holzapfel et al. [HS09].

Latin Music Database
Songs 3637
Genres Pagode (307/17), Forro (313/33), Bachata (313/72), Tango

(816/20), Merengue (315/103), Bolero (315/102), Salsa (311/64),
Gaucha (312/104), Sertaneja (322/10), Axe (313/40).

The Latin Music (LMD) database was created by Silla et al. [SJKCK08]. 3 637 songs are classified
into ten Latin dance genres. According to Silla et al., the songs were carefully selected by
professionals. More information about the LMD can be found on the website of the authors17.

15http://www.seyerlehner.info/, visited August 12th, 2011
16http://mtg.upf.edu/ismir2004/contest/rhythmContest/, visited August 12th, 2011
17http://www.ppgia.pucpr.br/~silla/lmd/, visited August 12th, 2011
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Figure 2.5: Increase/Decrease of the Ck=1,5 classification accuracies of EP and PS compared to
the standard music similarity algorithm ME.

Popular Rhythms

Songs 347
Genres Jive (30), Jig (16), Minuet (20), Quickstep (26), DrumnBass (14),

ChaChaCha (18), BreakBeat (29), Tango (25), ViennesseWaltz
(25), Merengue (16), Rumba (15/, Slowfox (25), Salsa (30), Samba
(30), DiscoFox (28).

The “Popular Rhythms” database was created by Holzapfel [AAG11] who classified 347 songs
into 14 genres.

2.5.2 Genre Classification
We conduct an initial genre classification experiment on all collections we have introduced in the
previous section. Where applicable we use an artist filter (denoted by AF). Table 2.3 shows the
individual classification accuracies of each music similarity algorithm by collection. We computed
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the classification accuracies for k = 1, 5, 10, 20. From the table we can see that PS is performing
excellently on all collections and is, in terms of Ck, notably better than the basic music similarity
algorithm ME. Another observation is that the classification accuracy of ME drops sharply if
an artist filter is used. This is an indication that in many cases ME is merely doing well in
identifying artists instead of computing music similarity. EP and PS consistently perform better
than ME even if an artist filter is used, although their performance drops sharply too.

To compare PS with EP we now look at the increase of each algorithm’s classification accuracy
relative to ME (see Figure 2.5). The first observation is that using a rhythm similarity component
in PS leads to a significant increase of classification accuracy in rhythmic collections compared
to ME (i.e., Ballroom (+33.7%), Cretan Dances (+4.4%), LMD (+3.1%, +16.9%) and Popular
Rhythms (+38.0%)) while at the same time all other classification rates increase too. Apparently
the rhythm component also helps to increase the algorithms performance on collections where the
genres are defined by timbre. PS also outperforms EP (with the exception of the Cretan Dances)
especially on rhythmic genre collections, which makes PS a top-choice as a music similarity
measure.

2.6 Problems Using the Methods on a Large Scale
We have introduced and evaluated three content-based computer music similarity algorithms.
However three major shortcomings common, to all these algorithms, prevent them from being
used widely and on large scale collections. The following section identifies and discusses these
issues.

2.6.1 Non-Vectorial Representation, Non-Metric Music Similarity
A predominant problem of the algorithms are, simply put, the very uncommon music similarity
models. In all introduced music similarity algorithms parametric multivariate Gaussians N ∼
(Σ, µ) are used to represent a song: ME, EP and PS use the multivariate Gaussian for the timbre
features. PS also uses a Gaussian for the rhythmic features. The single Gaussian representation
is rather uncommon in other research fields, and usually some kind of vector representation is
used. An example where probability distributions are used as features is image retrieval where
color histograms are commonly used (c.f. Pérez et al. [PHVG02]). However, as opposed to the
continuous distributions which are used in the case of the music similarity algorithms, these
distributions are in discrete form.

As a consequence of the Gaussian representation non-metric Kullback-Leibler divergences
have to be used to estimate the similarity between two Gaussians, as opposed to a standard
vector norm (e.g. `2).

While a linear arrangement by similarity can easily be computed with one of the aforemen-
tioned similarity algorithms (ME, EP, PS), more efficient algorithms for indexing, clustering or
visualization are just not designed to work with Gaussian distributions and non-standard metrics
like the Kullback-Leibler divergence induces. For instance, how would a centroid be computed
amongst a number of Gaussians?

To work around that limitation the feature data is often artificially vectorized. In the domain
of content-based music similarity techniques we have seen approaches computing the full distance
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Ck

Collection Algorithm Artist Filter 1 5 10 20
ISMIR 2004 (Train) ME no 80.4% 67.9% 60.6% 57.1%

EP no 81.3% 70.1% 64.5% 60.2%
PS no 86.1% 73.5% 71.1% 63.3%
ME yes 64.2% 61.9% 60.2% 57.8%
EP yes 69.0% 66.2% 63.2% 60.8%
PS yes 72.5% 69.0% 66.2% 63.5%

ISMIR 2004 (Full) ME no 85.0% 75.6% 68.9% 62.3%
EP no 84.2% 75.7% 71.6% 64.6%
PS no 89.4% 79.1% 76.5% 71.8%

GTzan ME no 73.8% 54.1% 48.4% 35.3%
EP no 73.7% 55.1% 48.6% 39.6%
PS no 80.1% 64.2% 54.1% 46.1%

Homburg ME no 43.8% 39.8% 36.3% 36.6%
EP no 44.4% 43.6% 39.4% 38.7%
PS no 48.6% 46.1% 44.3% 41.9%
ME yes 41.8% 40.7% 39.3% 38.1%
EP yes 43.3% 42.7% 41.6% 40.2%
PS yes 47.5% 46.8% 45.5% 44.6%

1517 Artists ME no 41.9% 24.4% 19.8% 15.6%
EP no 42.0% 25.5% 21.9% 17.6%
PS no 49.8% 33.5% 27.8% 22.7%
ME yes 22.1% 19.7% 18.5% 17.0%
EP yes 24.9% 21.9% 20.7% 19.1%
PS yes 31.2% 28.4% 26.7% 24.9%

Ballroom Dataset ME no 54.3% 42.1% 36.4% 31.5%
EP no 67.9% 55.2% 49.6% 41.3%
PS no 88.0% 78.9% 73.2% 58.3%

Cretan Dances ME no 26.1% 18.9% 20.6% 22.2%
EP no 31.7% 28.3% 16.1% 17.2%
PS no 30.5% 26.3% 28.0% 22.9%

Latin Music Database ME no 92.4% 84.5% 76.6% 65.4%
EP no 90.9% 80.0% 73.1% 66.3%
PS no 95.9% 89.8% 84.4% 77.8%
ME yes 65.2% 57.4% 56.7% 53.9%
EP yes 68.2% 64.5% 61.9% 58.3%
PS yes 82.1% 77.7% 75.4% 71.6%

Popular Rhythms ME no 35.2% 19.3% 18.7% 9.2%
EP no 40.9% 27.7% 20.7% 18.4%
PS no 73.2% 49.9% 38.0% 23.3%

Table 2.3: Results of a genre classification experiment on all eight datasets. The classification
accuracies Ck=1,5,10,20 for three music similarity algorithms (ME, EP, PS, where applicable with
Artist Filter) are reported. In all but one collection PS returns consistently the best classification
accuracies.
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matrix and using each row of the matrix as a feature vector [KSPW07, PRM02a], or more
venturesome ones reshaping the Gaussian covariance matrix and mean vector into a single long
vector [ME07]. The first solution becomes very expensive to compute as the collection grows,
and the latter one, although fast, takes away the sense of using Gaussians.

Having a good music similarity measure, but not being able to even use it for native clus-
tering, is a big problem for a real applied large scale music recommendation system. In such an
application clustering is essential to build a fast search index or to create a visualization. Com-
puting a full similarity matrix for one of these tasks is impossible for collections with millions of
tracks.

No method except for our own work [SFWG10] has been published so far that deals with the
specific problem of clustering with these music similarity measures. We introduce these methods
in greater detail in Chapter 3 and show how to correctly handle multivariate Gaussians and
their attached divergences in clustering algorithms. We also present a modified Self Organizing
Map (SOM) visualization/clustering algorithm that works directly and naturally with Gaussian
features.

2.6.2 The Hub Problem
The introduced music similarity algorithms are affected by a problem which negatively influences
the retrieval quality of the algorithms. It turns out that that specific songs (so-called “hubs”)
appear unwontedly often as nearest neighbors for a large portion of songs in the collection.
This in turn causes the effect that some songs are never recommended at all (these are called
“orphans”). In MIR literature the problem is referred to as the “hub problem” [PA04, GFS10].
This is especially problematic in similarity based recommendation or browsing systems since it
would be highly desirable that all songs are equally discoverable (or discoverable at all).

To illustrate the impact of the “hub problem” on our collections, we show how often each
song occurs in other top five nearest neighbors lists for two selected collections in Figure 2.6. We
use the ISMIR 2004 (Train) and 1517 Artists collections with the default ME music similarity
algorithm. From the plots it can be seen that using ME leads to the effect that over 100 songs
(ISMIR 2004 (Train)) or 800 songs (1 517 Artists) are never found in any nearest neighbor lists,
thus never recommended – orphaned. On the other hand a few hub songs appear in almost 10%
(ISMIR 2004 (Train)) or 5% (1517 Artists) of all nearest neighbor lists. Similar adverse effects
can be observed for all music collections.

We have examined the effect of hubs and orphans in a real music recommendation service on
the web in a previous work [FGS10]. The web music recommendation service we created is called
FM4 Soundpark18. The FM4 Soundpark hosts around 11 000 free music tracks from independent
bands and artists. To help exploring the music database, an automatic music recommendation
system (based on the ME similarity algorithm) was developed by our research team. Whenever a
user listens to a song from the database, they are presented with lists of most similar songs. These
lists can be explored interactively by going from song to song and expanding the similarity lists.
In theory, any song from the data base should be discoverable from the similarity lists, however
the “hub problem” unfortunately prevents this from happening. We show that when using ME,
only 65% percent of all songs can be reached using an arbitrary start song in the recommendation

18http://fm4.orf.at/soundpark, visited August 12th, 2011
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Figure 2.6: Limitations of music similarity algorithms using the example of ME on two collections:
The figure plots the number of occurrences a song has in all k = 5 nearest neighbor lists of a
collection. A large number of songs never occur as nearest neighbor (“orphans”), while at the
same time a few songs are appearing in a large number of nearest neighbor lists (“hubs”).

interface, while there exist a few hub songs which appear in almost 5% of all recommendations.
This is a grave limitation of the recommendation service and the audio similarity algorithm.

In another paper [FSGP10a] we show that a linear combination of multiple similarity measure
can alleviate the hub problem. More precisely we examine the EP method (a linear combination
of ME with the Fluctuation Patterns see Section 2.4.3) and show that the number of hubs in the
Soundpark music collection halves.

The hub problem has been examined for PS by Pohle [Poh10], who observes a sharp decline
in orphans and hubs when using PS. Figure 2.7 shows the positive effects in terms of hubs and
orphans for the two previously examined collections, where in both cases hubs and orphans are
reduced in PS. Chapter 4 will show that this positive effect comes from the way PS normalizes the
distances. As already mentioned in Section 2.4.4, PS uses a preliminary variant of the method
which we present in Chapter 4. It was subsequently also used by Seyerlehner et al. [SWP10]
(termed distance space normalization) to linearly combine multiple similarity measures.

Chapter 4 introduces a general method, which we call Mutual Proximity, to alleviate the
problem of hubs. The approach is fully unsupervised, scalable and transforms an arbitrary
distance or similarity to a new probabilistic similarity. The chapter investigates the method
and its effect on hubs. Using it like Pohle [Poh10] or Seyerlehner et al. [SWP10] only for linear
combination of multiple measures is only a side aspect of the method. We evaluate Mutual
Proximity using 30 general public machine learning datasets. In these experiments we can show
that using the method leads to a significant decrease of hubs and at the same time to an increase
of k-nearest neighbor classification accuracy with high dimensional data spaces.
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Figure 2.7: Comparing the distribution of k = 5-occurrences of ME and PS. We can see that
PS reduces the number of orphans (songs which never occur as nearest neighbor) and hubs
significantly.

Besides presenting a general method to alleviate the hubs problem, we also show that the
quality of all music similarity algorithms (ME, EP in addition to PS) benefits from using the
proposed method. Mutual Proximity can be easily approximated so that it can be used with
large scale collections.

2.6.3 Missing Search Algorithms
A major problem which prohibits the introduced music similarity algorithms from being used
for very large collections, is the lack of indexing algorithms that are capable to build an efficient
search index for the uncommon multivariate Gaussian features together with their associated
Kullback-Leibler divergences. The non-vectorial features and the uncommon divergences prevent
us from using one of the many standard search algorithms such as kd-trees or locality sensitive
hashing.

In addition to these basic problems, the high dimensionality of the features to be indexed
poses another obstacle to a search algorithm. In very high dimensional spaces classic search
structures like space partitioning algorithms tend to lose their efficiency. This effect has been
termed the curse of dimensionality [Bel61a, MP88]. As a result of that, even with appropriate
partitioning/clustering methods, we can not achieve high retrieval accuracies in sub-linear time.

Chapter 5 proposes a method for fast nearest neighbor retrieval in large databases which
works well for the class of introduced music similarity algorithms. In its core the proposed
method first rescales the Kullback-Leibler divergence to make it more “metric”. It then uses
a modified FastMap implementation to compute a vector-space approximation of the Gaussian



32 CHAPTER 2. COMPUTATIONAL MEASURES OF MUSIC SIMILARITY

features. We use this vector approximation to speed up nearest-neighbor search using a filter-
and-refine system layout. In our method first a coarse scan quickly pre-filters all objects in
the database for good candidate nearest neighbors in the vector space. In a second step the
candidates are refined using the original similarity method.

Overall the method that way accelerates the search for similar music pieces by a factor of
10–40. Although the proposed method is an approximate search algorithm it still yields high
recall values of 95–99% compared to a standard linear search.

2.7 Summary
This chapter has given an introduction to computational models of music similarity and presented
three different content-based computer music similarity algorithms: ME, EP, PS. PS is currently
one of the top performing music similarity algorithms, which we confirm in our genre classification
experiments comparing the performance of all three algorithms. We introduced eight different
public music collections which will be used throughout the thesis to evaluate our algorithms.

We identified three major problems which need to be tackled before using any of the music
similarity methods in an effective and large scale music recommendation application: (i) han-
dling Gaussian features and their associated Kullback-Leibler divergences, (ii) finding an efficient
solution to the hub problem, and (iii) building an indexing solution for the similarity algorithms
to allow rapid answers to recommendation queries on large collections.

These three problems will be investigated in the next chapters of the thesis to finally build
at a truly scalable, high-quality music recommendation system.
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This chapter defines the multivariate Gaussian as a part of the exponential class of distributions
(Section 3.2), introduces Bregman divergences, their link to the exponential family of distributions
and shows how all Bregman divergences can be natively used in a generalized k-means clustering
algorithm (Section 3.3). These basic definitions enable us to use Gaussian features and their
Bregman divergences in centroid-computing algorithms. In Section 3.4 we refine these general
definitions for the multivariate Gaussian as they are used in the music similarity algorithms
(ME, EP, PS). Sections 3.2 – 3.4 review existing literature, to, for the first time, show the link
between the recent research results in the filed of Bregman divergences and recent music similarity
measures.

In Section 3.5 we build on that and propose a generalized self-organizing map (SOM) algo-
rithm. We show how the SOM algorithm can be changed to naturally work with Gaussians as
features. SOMs are popular to compute two- and three-dimensional visualizations of music col-
lections. In previous visualizations the Gaussian features have always been artificially vectorized
before they could be used in the SOM algorithm. We show that using the SOM algorithm directly
with the Gaussians and their divergences leads to higher-quality visualizations of music archives.
We also retain the nice scalability characteristics of the general SOM algorithm. We published
the method in 2010 [SFWG10]. The section extends the published results.

Finally Section 3.6 introduces the MVN (Multivariate Normals) GNU Octave/Matlab toolbox
which includes all methods which have been presented here to simplify further research working
with multivariate Gaussians. The toolbox is available freely on the Internet 1.

3.1 Introduction
One of the basic foundations of content-based music recommendation systems is the ability to
compute music similarity with a similarity function. We have presented three algorithms (ME,
EP, PS) to compute music similarity in Chapter 2. All three variants use multivariate Gaussians
as their song models and a Kullback-Leibler divergence as similarity function.

We see the single Gaussian representation of the music features as a very powerful way to
describe the variability of the measured features (e.g. timbre) in a song. By using a Gaussian
representation the song’s characteristics can be stored efficiently, while at the same time the
features seem to be smoothed enough to allow modeling of general music similarity. With the
Kullback-Leibler divergences there also exist well founded ways to compute a distance/similarity
value between the models. For simple similarity computation the algorithms are widely used.

But things get interesting when we leave the path of simple feature extraction and similarity
computation. Standard algorithms for indexing, clustering or visualization are usually just not
designed to work with Gaussian distributions and non-standard metrics like the one the Kullback-
Leibler divergence defines.

To work around that limitation and still use the well performing features in clustering algo-
rithms, works dealing with this problem usually artificially vectorize the features. In the domain
of content based music recommendation, we have seen approaches computing the full distance

1http://www.ofai.at/~dominik.schnitzer/mnv, visited August 12th, 2011
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matrix and using each row of the matrix as a feature vector [Pam06, KSPW07], or more ven-
turesome ones that reshape the Gaussian covariance matrix and mean vector into a single long
vector [ME07]. The first solution requires the full similarity matrix to be computed and gets
more expensive the larger the collection grows, and the latter one, although fast, takes away the
sense of using Gaussians. None of these uses is ideal.

In [MUNS05], where an algorithm for visualizing and clustering music collections using an
Emergent SOM is described, the authors even argue that they cannot use Gaussian music simi-
larity features as “they can not be used with datamining algorithms requiring the calculation of
a centroid”.

Solving that problem is the focus of this chapter. The basis for our research was published
by Banerjee et al. [BMDG05] where it was shown how the k-means clustering algorithm can be
generalized to the broad class of Bregman divergences. This generalization practically opened all
centroid-based algorithms to the wide range of Bregman divergences, which the Kullback-Leibler
divergence is part of.

The results of Banerjee’s work have since then already been used widely in different areas,
like data mining, indexing, image retrieval or general machine learning. For example, Garcia
et al. [GNN10] use the findings about Bregman divergences to design an image segmentation
algorithm; Cayton [Cay08] uses k-means clustering with Bregman divergences to build one of the
first indexing structures for these divergences. Cayton’s indexing structure is called “Bregman-
ball tree” and is shown to achieve sub-linear query times and high retrieval accuracies for low
dimensional data.

The following Sections (3.2–4) summarize published definitions and methods in literature,
to show how to correctly use Bregman divergences in music similarity measures, before arriving
at Section 3.5 and 3.6, the main contributions of this chapter: a generalized SOM algorithm
for Gaussians, and an open Octave/Maltab toolbox implementing all methods presented in this
chapter.

3.2 The Exponential Class of Distributions

This broad family of probability distributions includes distributions like the gamma, exponential,
multinomial or the normal distribution. In fact all distributions which can be reduced to the
canonical form of the exponential class [NBN07] are included in that family. The canonical form
is defined by:

• F (θ), the log normalizer function, a strictly convex and differentiable function that uniquely
specifies the exponential family,

• θ, the natural parameters associated with the sufficient statistics t(x). The original (source)
parameters of a distribution are denoted with λ. The natural parameters, λ, can be com-
puted from the source parameters, θ, and vice-versa.

• C(x), a Lebesgue/carrier measure.
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So that the canonical exponential form pF (x; θ) of a probability distribution p(x;λ) is defined as
(< ·, · > in the equation denotes the inner dot-product of two vectors):

p(x;λ) = pF (x; θ) = exp (< θ, t(x) > −F (θ) + C(x)) . (3.1)

For example we can look at the univariate normal distribution N (µ, σ2). The source param-
eters of N are λ = (µ, σ2). Its probability density function (pdf) is defined as:

p(x;µ, σ2) = (2π)− 1
2 (σ2)− 1

2 exp
(
−1

2(x− µ)2(σ2)−1
)

(3.2)

It can be rewritten to the canonical exponential form and thus is a member of the exponential
family:

• The log normalizer F (θ) = − θ2
1

4θ2
+ 1

2 log(−πθ2
)

• Its natural parameters θ = (θ1 = µ
σ2 , θ2 = 1

2σ2 )

• The sufficient statistic t(x) = (x, x2)

• The carrier/Lebesque measure C(x) = 0

Nielsen and Nock [NN09] have more details and examples of different exponential family decom-
positions.

3.2.1 The Multivariate Normal Distribution
The multivariate normal distribution (MVN) as it is used in all content-based music similarity
algorithms we employ, is a natural member of the exponential family of distributions. We define
its canonical decomposition and two important aspects (entropy and the estimation from data).

Canonical Decomposition

A multivariate normal (or Gaussian) distribution is defined by two source parameters, its mean
vector µ ∈ Rd and its covariance matrix Σ (d × d, symmetric positive semi-definite variance-
covariance matrix). These two define its probability density function (pdf):

p(x;µ,Σ) = (2π)−
d
2 |Σ|− 1

2 exp
(
−1

2(x− µ)′Σ−1(x− µ)
)
. (3.3)

We denote a multivariate Gaussian with X ∼ N (µ,Σ). According to Nielsen et al. [NBN07] its
canonical exponential class decomposition is given by:

• The log normalizer F (θ) = 1
4 tr
(
θ−1

1 θ2θ
T
2
)
− 1

2 log |θ1|+ d
2 log π,

• Its natural parameters θ = (θ1 = Σ−1µ, θ2 = 1
2 Σ−1),

• The sufficient statistic t(x) = (x,−xTx),

• The carrier/Lebesque measure C(x) = 0.
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Entropy

The entropy of a multivariate Gaussian distribution X is denoted with H(X). It is defined as:

H(X) = 1
2 ln

(
(2πe)d |Σ|

)
(3.4)

Estimation from Data

To estimate the parameters of a Gaussian X ∼ N (µ̂, Σ̂) from a number of data vectors or
observations xi=1..n, their maximum likelihood estimator is used:

µ̂ = 1
n

n∑
i=1

xi, Σ̂ =
(

1
2n

n∑
i=1

xixTi

)
− µ̂µ̂T (3.5)

This parameter estimation method was already used in all computer music similarity methods
introduced in Chapter 2. All methods (ME, EP, PS) fitted a single multivariate Gaussian to d-
dimensional spectrum vectors to build a music similarity model.

3.3 Bregman Divergences
Bregman divergences [Bre67] are defined for every strictly convex and differentiable function
F (x):

BF (p, q) = F (p)− F (q)− 〈p− q,∇F (q)〉 , (3.6)

where ∇F (q) denotes the gradient of F at q and 〈·, ·〉 the inner dot-product of two vectors (i.e.,
〈x, y〉 = xT y).

A simple widespread example for a Bregman divergence is the squared Euclidean dis-
tance [BMDG05]. Its generating log normalizer is F (x) = 〈x, x〉 and the gradient at any point
x is ∇F (x) = 2x. Using the generating function F (x) in the definition of a Bregman divergence
we can easily derive the original definition of the squared Euclidean distance from that:

BF (p, q) = 〈p, p〉 − 〈q, q〉 − 〈p− q, 2q〉 (3.7)
= 〈p, p〉 − 〈q, q〉 − 2 〈p, q〉+ 2 〈q, q〉 (3.8)
= 〈p− q, p− q〉 = ‖p− q‖2.

Figure 3.1 depicts the squared Euclidean distance between two points p, q as a Bregman diver-
gence BF (p, q) in R1.

There exists a large number of divergences which belong to the family of Bregman divergences.
For example the Mahalanobis distance, the Ikatura-Saito distance or the Kullback-Leibler diver-
gence [BMDG05].
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△

pq

B
F
(p,q)

F(q)
F(x)

Figure 3.1: Schematic plot of the squared Euclidean distance as a Bregman divergence BF .
∇F (x) is the gradient tangent-line at point q. The Bregman divergence BF (p, q) is the distance
between the tangent and F (x) at p.

Properties
Bregman divergences have the following properties:

• Non-Negativity: BF (p, q) ≥ 0, ∀p, q

• Asymmetry: BF (p, q) 6= BF (q, p), ∀p 6= q

• Convexity: in the first argument p of the function BF (p, q)

• Duality: BF (p, q) = BF∗(∇F (q),∇F (p)). BF∗ is the Bregman divergence defined with the
convex conjugate function of F (x):

F ∗(∇F (x)) = 〈x,∇F (x)〉 − F (x) (3.9)
∇F ∗ = (∇F )−1 (3.10)

Bregman divergences do not necessarily fulfill the triangle inequality, thus are per definition
non metric divergences, i.e. they are no distances.

3.3.1 Linking the Exponential Family
Banjeree et al. [BMDG05] showed an important link between Bregman divergences and the
exponential family of distributions. In their equivalence theorem they prove that the Kullback-
Leibler divergence between two distributions from the exponential family is the same as the
Bregman divergence of their log normalizer generator function (F (x), see Section 3.2) but with
swapped parameters:

KL(p(x;λ1)|p(x;λ2)) = BF (θ2, θ1) (3.11)
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The parameters θ denote the natural parameters and λ the source distribution parameters (Sec-
tion 3.2) of the distributions. The importance of the theorem formulated by Banjeree et al. is
clear, as it practically links all methods developed for Bregman divergences – via the Kullback-
Leibler divergence – to the broad family of exponential-class of distributions.

3.3.2 Bregman Centroids
Every Bregman divergence (see again Banjeree et al. [BMDG05]) defines a unique right-type
centroid cR of a point-set P = {p1, ..., pn}. The right-type centroid is the minimizer of the
centroids right divergences to all points pi ∈ P: arg min

∑
pi∈P BF (pi, cR):

cR = 1
n

n∑
i=1

pi (3.12)

The Bregman right-type centroid is always the center of mass and thus independent of the
Bregman divergence. Bregman divergences also define a unique left-type centroid, cL. It is
defined using the right-type centroid of its dual Bregman divergence BF∗ (see Section 3.3).

The right type-centroid c′R of BF∗ is again simply the center of mass of the gradient point
space [NBN07]. To compute cL the right type centroid c′R has to be inverted with the inverse
gradient function ∇F−1(x):

cL = (∇F )−1(c′R), (3.13)

c′R = 1
n

n∑
i=1

p′i, p′i = ∇F (pi) (3.14)

3.3.2.1 Centroids for Symmetrized Bregman Divergences

Symmetrized Bregman divergences are defined as BFsym
(x, y) = 1

2 BF (x, y) + 1
2 BF (y, x). A

popular symmetrized Bregman divergence is the symmetrized Kullback-Leibler divergence (see
Section 3.4.1.2).

There exists no closed form solution to the centroid c of symmetrized Bregman divergences:

c = arg min
c

∑
pi∈P

1
2 (BF (pi, c) +BF (c, pi)), (3.15)

Although c can not be computed directly form both the right (cR) and left-type centroid (cL),
c is still geometrically uniquely defined. Nielsen and Nock [NBN07] present a bisection search
algorithm to find the centroid c:

1. Initialization: set λ0 = 0 and λ1 = 1.

2. Mid-Point: Compute the mid-point λc = λ0+λ1
2 and the corresponding point c on the

geodesic linking:

c = (∇F )−1((1− λc)∇F (cR) + λc∇F (cL)). (3.16)
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3. Branching: If BF (cR, c) < BF (c, cL) set λ0 = λc, else set λ1 = λc.

4. Repeat step 2 and 3, until a threshold (ε) is reached, i.e., |λ0 − λ1| < ε.

Essentially the bisection search algorithm iteratively computes a weighted mix between the left
and right-type centroid to find c (Equation 3.15).

3.3.3 K-means Clustering
With the definitions of the centroids Banerjee et al. [BMDG05] showed that it is possible to cluster
a point-set P = {p1, ..., pn} using the standard k-means algorithm with the new centroids, either
using the left, right or symmetrized centroid. The generalized k-means algorithm has four steps:

1. Random initialization (once): randomly assign one of the k centers cj a point pi.

2. Assign each pi to their closest center cj .

3. Recompute the centers cj according to the points pi which have been assigned to them.

4. Repeat step 2 and 3 until a convergence criterion is reached.

The only difference to the classic k-means algorithm is that in step 3, a Bregman centroid is
computed. Step 2, of course, uses the same Bregman divergence to assign the points to their
centers which is used to compute the centroids. To use different initialization methods for k-
means (step 1) selected initialization method needs to be compatible to work with Gaussians
and their divergences.

3.4 Bregman Divergences and Music Similarity Measures
With these definitions all is in place to return to the computer music similarity methods and
their multivariate Gaussian similarity features. The next sections define the divergences and,
based on that, the centroids of the Gaussian features as they are used in the ME, EP, PS
music similarity algorithms. These definitions enable us to natively use the features in centroid-
computing algorithms like the k-means algorithm (Section 3.3.3).

3.4.1 Kullback-Leibler Divergences for Multivariate Gaussians
We have shown the direct connection of Bregman divergences to the exponential family of dis-
tributions and the Kullback-Leibler divergence. In Chapter 2 we have introduced three music
similarity algorithms which all use Kullback-Leibler divergences as they are defined for multi-
variate Gaussians. All divergences which are presented here are implemented in a freely available
Octave/Matlab toolbox, to be presented in Section 3.6.

This section defines all divergences for the multivariate Gaussian, as they have been used
in the music similarity algorithms (Chapter 2) and sets them into a common context. All
these divergences are closely related to the Kullback-Leibler divergence. To use any of the
divergences in a music similarity algorithm, the divergences need to be used in their closed form
for multivariate parametric Gaussians. For example, the music similarity algorithms ME and EP
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both use a symmetrized version of the Kullback-Leibler divergence to compute similarity, whereas
PS uses a Jensen-Shannon-like divergence. The divergences in the different music similarity
algorithms are interchangeable, as the song models are all of the same form, i.e. multivariate
Gaussians.2

The Kullback-Leibler divergence is known under a number of synonyms like relative entropy or
information gain and was introduced by Kullback and Leibler [KL51]. The divergence computes
the difference between two distributions p and q:

KL(P |Q) =
∫
p(x) log p(x)

q(x) dx. (3.17)

It is non-symmetric and non-negative. Although the divergence is sometimes misleadingly named
a distance, it is none – the triangle inequality does not hold. From the definition of the Kullback-
Leibler divergence its close relation to the Shannon-entropy, H(x), and thus its synonym relative
entropy, can be seen:

H(P ) =
∫
p(x) log p(x) dx. (3.18)

The Kullback-Leibler divergence forms the basis of a number of different related divergences.
The next sections define and discuss the closed form solutions of Kullback-Leibler divergences
for multivariate Gaussians. We denote a multivariate Gaussian with X ∼ N (µ,Σ).

3.4.1.1 Kullback-Leibler Divergence

The Kullback-Leibler divergence and its closed form for two multivariate Gaussians X1, X2 is
defined as (see for example Hershey and Olsen [HO07]):

KL(X1|X2) = (3.19)
1
2

(
tr
(
Σ−1

2 Σ1
)

+ (µ2 − µ1)>Σ−1
2 (µ2 − µ1)− loge

|Σ1|
|Σ2|

− d
)
,

where tr (M) is the trace of a matrix M .

3.4.1.2 Symmetrized Kullback-Leibler Divergence

The symmetric or symmetrized Kullback-Leibler (SKL) divergence is the most widely used vari-
ant of the divergence. Symmetry is an intuitive property which is expected from many di-
vergences. The SKL symmetrizes the Kullback-Leibler divergence by swapping arguments and
averaging both divergence values:

SKL(X1, X2) = 1
2 (KL(X1|X2) +KL(X2|X1)) . (3.20)

2We noted in our experiments that the Jensen-Shannon-like divergence as it is used in PS leads to higher-quality
results in the ME and EP algorithms, which originally use the symmetrized Kullback-Leibler divergence
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The closed form for the multivariate Gaussian simplifies to:

SKL(X1, X2) = (3.21)
1
4

(
tr
(
Σ1Σ−1

2
)

+ tr
(
Σ2Σ−1

1
)

+ tr
((

Σ−1
1 + Σ−1

2
)

(µ1 − µ2)2
)
− 2d

)
.

Implementation Details

If the SKL is used in music similarity algorithms, fast implementations (i) pre-compute the
inverted covariance matrix (Σ−1) of each song and (ii) use the fact that the matrix trace of a
matrix product can be computed very efficiently (only the matrix diagonal of the product needs
to be computed). We present a fast implementation in [Sch07].

3.4.1.3 Jensen-Shannon Divergence

The Jensen-Shannon (JS) divergence is another symmetric divergence derived from the Kullback-
Leibler divergence. To compute it, a mixture Xm of the two distributions is defined:

Xm = 1
2(X1 +X2) (3.22)

The JS divergence is the average of the Kullback-Leibler divergence of X1 and X2 to the mixture
Xm:

JS(X1, X2) = 1
2 (KL(X1|Xm) +KL(X2|Xm)) , (3.23)

There exists a dual definition of the Jensen-Shannon divergence which permits its estimation
through the Shannon entropy [Lin91]:

JS(X1, X2) = H(Xm)− 1
2H(X1)− 1

2H(X2), (3.24)

Unfortunately the mixture of two Gaussians is not a Gaussian anymore, but a Gaussian mix-
ture model. The Kullback-Leibler divergence between a Gaussian and a mixture model, as well
as the Shannon entropy of a Gaussian mixture model has no closed form solution for the multi-
variate Gaussian. However, a number of approximations exist which can be used instead [HO07].

3.4.1.4 A Jensen-Shannon-like Divergence

To use the Jensen-Shannon divergence (cf. Section 3.4.1.3) to estimate similarities between Gaus-
sians, an approximation of Xm as a single multivariate Gaussian can be used:

µm = 1
2µ1 + 1

2µ2 (3.25)

Σm = 1
2
(
Σ1 + µ1µ1

T
)

+ 1
2
(
Σ2 + µ2µ2

T
)
− µmµmT . (3.26)

This approximation ofXm is exactly the same as the left-type Kullback-Leibler centroid of the
two Gaussian distributions (see for example Xu et al. [XDDD98]). Other approximations require
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Monte-Carlo sampling or even the use of an expectation maximization algorithm to iteratively
approximate the divergence. Although the other approximations may be more accurate, their
computational overhead is too big to be used in any large application.

The proposed Xm approximation conserves the important divergence properties of symme-
try, non-negativity and identity. With its clear definition an approximated JS divergence can
be computed easily for the multivariate Gaussian using one of the two introduced Equations
(3.24 or 3.23). For the multivariate Gaussian the JS divergence can be simplified to (from
Equation 3.24):

JS(X1, X2) = 1
2 log |Σm| −

1
4 log |Σ1| −

1
4 log |Σ2|. (3.27)

Implementation Details

In implementations of this variant using high dimensional Gaussians, problems can occur with
skyrocketing values of determinants which lead to inaccurate results. In this case the logarithm
of the determinant should be computed as the sum of the upper-triangular matrix of a Cholesky
decomposition. This alternative formulation is much more accurate on standard floating point
architectures.

3.4.2 Kullback-Leibler Centroids for the Multivariate Gaussian
This section defines and presents algorithms to compute the centroids for the multivariate Gaus-
sian and all Kullback-Leibler divergences we use in the music similarity algorithms. All methods
are implemented in a freely available Octave/Matlab toolbox, to be presented in Section 3.6.

3.4.2.1 Left and Right Centroids

Both, the left- and right-type centroids are explicitly defined for the multivariate Gaussian and
can be computed from the definition of the Kullback-Leibler divergence as a general Bregman
divergence. Nielsen and Nock [NN09] computed the transformation of the source and natural
parameters for the multivariate Gaussian. Using these results we can directly compute the left-
type (CL(X ) ∼ N (µL,ΣL)) and right-type (CR(X ) ∼ N (µR,ΣR)) Kullback-Leibler centroids of
a set of multivariate Gaussians X = {X1, . . . , Xn}, Xi ∼ N (µi,Σi) (T denotes the transpose of
a matrix or vector):

CL(X ) : µL = 1
n

n∑
i=1

µi ΣL = −µLµTL + 1
n

n∑
i=1

(
µiµ

T
i + Σi

)
(3.28)

CR(X ) : µR = ΣR

(
1
n

n∑
i=1

Σ−1
i µi

)
ΣR =

(
1
n

n∑
i=1

Σ−1
i

)−1

(3.29)

3.4.2.2 Symmetrized Centroids

With the exact definition of the two separate Kullback-Leibler centroids, the centroid for the
symmetrized Kullback-Leibler divergence can be computed in a straightforward way, using CL(X )
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and CR(X ) in the bisection search algorithm for symmetrized Bregman divergences as described
in Section 3.3.2.1.

Another way to quickly find a centroid approximation is to use a mid-point approximation
instead of computing the exact centroid. The mid-point empirically proved to be a good ap-
proximation of the true centroid of the symmetrized Kullback-Leibler divergence [Vel02]. The
approximation merges the weighted left and right centroids in one step:

CM (X ) : µM = 1
2 (µL + µR) ΣM = 1

2
∑

i={L,R}

(
µiµ

T
i + Σi

)
− µMµTM (3.30)

To estimate the Jensen-Shannon divergence centroid of a set of multivariate Gaussians
X = {X1, ..., Xn}, two Kullback-Leibler divergences would need to be minimized (Note that
the arguments of the KL divergence are swapped compared to a Bregman divergence BF )):

CJS = arg min
C

n∑
i=1

KL

(
Xi + C

2 |Xi

)
+KL

(
Xi + C

2 |C
)
. (3.31)

The minimizer would define the centroid of the Jensen-Shannon divergence as used in the
PS music similarity algorithm. There exists no direct centroid estimation method to compute
that centroid. However, the symmetrized Kullback-Leibler centroid can be used instead as an
approximation.

3.5 Self-Organizing Maps with Gaussian Music Similarity
Models

This section is an extension of the work published under the title “Islands of Gaussians: The
Self Organizing Map and Gaussian Music Similarity Features” [SFWG10].

There already exists a wide range of publications dealing with visualizing the similarity struc-
ture of digital music collections on self-organizing maps (SOMs). The SOM [Koh01] is an unsu-
pervised neural network that organizes multivariate data on a two dimensional map and is suited
well for visualizations. It maps items which are similar in the original high-dimensional space
onto locations close to each other on the map.

One of the first to use the SOM algorithm to visualize music according to a computer music
similarity measure were Rauber and Frühwirth [RF01], who use a basic music similarity feature
and a simple tabular grid to display the clustered song titles on the map. This idea was extended
by Pampalk et al. who use Fluctiation Patterns (see Section 2.3.2) and the smoothed data
histogram (SDH) visualization to draw the SOM [PRM02b]. Their visualization is inspired by
geographical maps: blue regions (oceans) indicate areas onto which very few pieces of music are
mapped, whereas clusters containing a larger quantity of pieces are colored in brown and white
(mountains and snow). It was published under the name “Islands of Music” [PRM02a].

“Neptune” [KSPW07], developed by Knees et al., improved the “Islands of Music” visualiza-
tion by taking the two dimensional map into the third dimension. They added information and
pictures from the web and allow a 3D walk through a music collection. They use EP as their
music similarity measure (see Section 2.4.3) to arrange songs on the map.
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Figure 3.2: This plot shows a sketch of 5 × 7 SOM grid. Each map unit on the grid is denoted
with ri, its unique model vector with mi. Each map unit is assigned a number of data vectors
(vj).

The “Globe of Music” [LT07] by Leitich and Topf uses a GeoSOM [WT06] to map the
music collection onto a globe for exploration. Lübbers developed the “SoniXplorer” [Lüb05] to
navigate through music archives. They use a multimodal navigation model where the music is
synchronized to the position on the map to support the user in the SOM navigation of the music
collection.

Mörchen et al. use the Emergent SOM algorithm to visualize and cluster music collections
in their “Music Miner” [MUNS05] system. For music similarity they use a large set of low-level
features similarly to the features used in MARSYAS (see Chapter 2, Section 2.3.2).

What all the publications of SOM visualizations of music archives have in common, is that
they could not directly be used with any of the music similarity measures discussed in this
work (ME, EP, PS) using Gaussians similarity models and Kullback-Leibler based divergences
as similarity function. With the previously presented centroid computation methods using these
music similarity measures is now possible. This section introduces the generalized SOM algorithm
which is capable to natively cluster multivariate Gaussians using the Bregman centroids. We
show that the new SOM maps which are generated have a higher quality than SOM maps created
with approaches artificially vectorizing the data.

3.5.1 The SOM Algorithm
The SOM consists of an ordered set of so-called map units ri, each of which is assigned a reference
vector (or model vector) mi in the feature space. The set of all reference vectors of a SOM is
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called its codebook. In the simplest case the codebook is initialized by a random strategy. Each
ri is assigned the data vectors vi which are most similar to mi. The map units ri are usually put
on a two dimensional grid. The distance of two map units on the grid can be computed with the
Euclidean or Manhattan distance. Figure 3.2 shows an example of a simple rectangular SOM
grid. There exists a multitude of SOM visualization techniques like the U-matrix visualization.
A popular way to visualize SOM grids trained with music similarity models is the smoothed
data histogram (SDH) [PRM02b]. SDHs visualizes clusters in the data set by estimating the
probability density of the data samples on the SOM.

To compute a SOM, first the map dimensions and the number of training iterations (t) have
to be fixed. The training is done in four basic repeating steps:

1. At iteration t select a random vector v(t) from the set of features.

2. Search for the best matching map unit c on the SOM by computing the distance of v(t) to
all mi in feature space distance.

3. The codebook is updated by calculating a weighted centroid between v(t) and the model
vector mc of the best-matching unit rc. Based on a neighborhood weighting function
hci(t) all map units participate in the adaptations depending on their distance on the two-
dimensional output map. Equation 3.32 uses a standard Gaussian neighborhood function.

hci(t) = α(t) exp
(
−||rc − ri||2α2(t)

)
(3.32)

mi(t+ 1) = mi(t) + hci(t) [v(t)−mi(t)] (3.33)

4. The adaptation strength α(t) is decreased gradually with the iteration cycle t. This sup-
ports the formation of large clusters in the beginning and a fine-tuning toward the end of
the training.

Usually, the iterative training is continued until a convergence criterion is fulfilled or a preselected
number of training iterations is finished. In the final step all data items vj are assigned to the
map unit ri whose model vector they are most similar to.

Although originally SOMs were defined for Euclidean feature vectors only, the algorithm is
not limited to the vector space. Kohonen himself mentions this in the most recent edition of his
standard work on self-organizing maps [Koh01]. This observation will be the basis for extending
the SOM algorithm to the “distribution space”.

3.5.2 The Generalized SOM
A closer look at the SOM algorithm sketched in the last section, shows that there is only a
single step where the algorithm in fact depends on vectors. It is the computation of the weighted
centroid in Equation 3.333. We now rewrite Equation 3.33 so that it is more obvious that a
centroid (a weighted mean of several vectors) is computed:

mi(t+ 1) = (1− hci(t)) mi(t) + hci(t)v(t) (3.34)
3The distance ||rc − ri|| in Equation 3.32 is computed in ‘map space’ and does not need to be modified.
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By rewriting Equation 3.33 this way we discover that if a weighted centroid can be computed
for a divergence, the SOM algorithm could be adopted to work with these divergences – and, in
the case of this work, with the features and divergences used in any music similarity measure a
weighted centroid can be computed.

3.5.2.1 Weighted Gaussian Centroids

To use the Kullback-Leibler divergences and Gaussian features of the music similarity algorithms
we modify the Gaussian centroids defined in Section 3.4.2 and add a per-Gaussian weighing term
ωi (with

∑n
i=1 ωi = 1). Thus the left-type and right-type weighted Kullback-Leibler centroid

definitions are:

Wω
L (X ) : µL =

n∑
i=1

ωiµi, ΣL = −µLµTL +
n∑
i=1

ωi
(
µiµ

T
i + Σi

)
, (3.35)

Wω
R(X ) : µR = ΣR

(
n∑
i=1

ωiΣ−1
i µi

)
, ΣR =

(
n∑
i=1

ωiΣ−1
i

)−1

. (3.36)

To compute weighted symmetrized Kullback-Leibler centroids, first the weighted left and
right centroids are to be computed. The bisection search algorithm (Section 3.3.2.1) or the
mid-point approximation (Section 3.4.2.2) can then be used to find the weighted symmetrized
Kullback-Leibler centroid.

3.5.2.2 Generalized Algorithm

With the definition of the weighted Kullback-Leibler centroids everything is in place to use the
SOM algorithm with Gaussian music similarity models:

• The initialization of the SOM and its mi is done by selecting random Gaussians from the
music similarity models. An initialization with a PCA is not possible in this case due to
the non-vectorial features.

• The iterative computation of the weighted centroid during the training of the codebook
can now be replaced with the respective weighted Kullback-Leibler centroids.

• The learning rate adaptation and neighborhood functions do not need to be changed. They
are not dependent on the features.

• In the final step the Gaussians are assigned to the nearest map units according to their
Kullback-Leibler divergence.

The generalized SOM algorithms now works directly with the Gaussian features; clustering is
done natively with the data and divergences as the algorithm was originally intended to.
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3.5.3 Evaluation
We now evaluate the generalized SOM with the ME and EP music similarity measures. As the
original PS algorithm uses a new normalization technique (Mutual Proximity, the main topic of
Chapter 4) to combine timbre and rhythm similarity and get rid of hubs, a centroid computation
is impossible. To use PS in a generalized SOM we use a workaround and only use the timbre
component in the SOM algorithm.

We plot and discuss two large SOMs which have been computed for the GTzan music col-
lection: one is computed using a vectorization approach, the other with the generalized SOM
algorithm natively using Gaussians.

To test how the SOM algorithm performs operating directly on the Gaussians we use all music
collections and similarity algorithms we have introduced. We compare the quality of the SOMs
generated with our approach to SOMs generated with vectorized features, which are computed
as follows: for each Gaussian model we build a vector by computing the distance to all other
model and normalize this distance vector to zero mean and unit variance. This is equivalent
to computing the full similarity matrix and using each (normalized) row as a feature vector (as
done e.g., in [KSPW07, Pam06]).

As a baseline for our experiments we show a randomly initialized SOM without any training.
In our experiments we vary the SOM size according to the size of the music collection. We use
a SOM grid size of 7 × 7 for collections with less than 1 000 songs, and a grid size 14 × 14 for
larger collections. To ensure a fair evaluation we took the following two precautions:

• In each run the same random seed is used for the random, vectorized and Gaussian SOM.
This ensures identical random initialization and use of the same randomly chosen features
during the training phase.

• Each unique experiment configuration is repeated ten times. The results reported here are
average values.

To quantitatively compare SOMs computed using the different methods, we compute the
average k-nearest neighbor rank distance and average map unit precision for each SOM. These
measures are described in the next paragraphs.

Average Nearest Neighbor Rank Distance

To compare SOMs generated with different approaches, we quantify how well the original neigh-
borhood topology is preserved in a SOM mapping. As we need to compare SOMs using different
metrics it is not possible to use standard SOM mapping quality measures like the quantization
error or clustering quality measures like the Dunn’s Index or the Davies-Bouldin Index [BP98].

Because of these limitations we define a rank measure: the average nearest neighbor rank
distance, which allows to cross-compare SOMs which were computed using different features and
divergence measures.

To do that, we search for the k-nearest neighbors of every item xi in the original space and
check their location on the SOM. Ideally the nearest neighbors should also be mapped close to
each other on the SOM.

For a given k and a Gaussian xi this will be measured as the k-nearest neighbor rank distance:
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1. Assign all Gaussians to their corresponding map unit on the two dimensional SOM grid
according to the similarity measure.

2. Assign all Gaussians xi the coordinates of their map unit on the two-dimensional SOM
grid (references as si).

3. For a Gaussian xi, use its two dimensional representation on the SOM (si) and compute
the Euclidean distance to all other Gaussians xj using sj , with j 6= i.

4. Sort the list of Euclidean distances in ascending order and transform it into a list of ranks.

5. Find the k nearest neighbors of xi in the original space, and average across their corre-
sponding ranks on the SOM (step 4) to get the k-nearest neighbor rank distance for xi.

The average k nearest neighbor rank distance, computed over all xi, measures how close
objects and their neighborhoods are mapped on the SOM, according to the original similarity
measure. The lower its value, the better the preservation of the original neighborhoods on
the SOM. In the experiments we compute the average k-nearest neighbor rank distance for
k = 1, 5, 10, 20.

Average Map Unit Precision

The label of a map unit is usually set by a majority vote of the class of the objects which are
assigned to it. We use the label of each map unit i to compute the percentage of objects on the
unit with the same class. We call that map unit precision (pi).

We average the precision over all map units which have objects assigned to them, and call
that the average map unit precision (p̄). By averaging only over the map units which have
objects assigned to them, tighter clustering on the SOM is rewarded. The average map-unit
precision should always be considered together with the average nearest-neighbor rank distance.
High values of p̄ alone can be misleading as they do not tell anything about the mapping of the
similarity space. But if the average nearest-neighbor rank distance is low too, and thus the SOM
algorithm was successful in creating a good mapping of the the songs according to the similarity
measure, a good SOM according to the collection’s genres could be created.

3.5.3.1 Results

Figure 3.3 and Figure 3.4 show the results of the evaluation computing SOMs using the music
similarity algorithms ME and EP, (a) with vectors from the distance matrix and (b) natively
using Gaussians in the generalized SOM algorithm.

From the bar-plots in both figures we can see that in all cases for k ≥ 5 the average kNN rank
distance is smaller for the Gaussian variant than using vectors from the full distance matrix -
an indication that the intermediate neighborhoods of objects is more accurately mapped in the
Gaussian SOMs than in the SOMs computed from vectors. The average map unit precision p̄
shows a similar positive picture for the Gaussian SOMs; simultaneously to the decreasing kNN
rank distance, r̄ is increasing all collections with ME (Figure 3.3) and in eight of nine collections
with EP (Figure 3.4). We interpret that as an increase of consistency in the map units.
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Taking for granted that the music similarity measure is of high quality, these results admit
the conclusion that SOMs computed directly with Gaussians produce higher-quality mappings
and this method should be preferred.

Besides producing higher-quality SOMs, we emphasize that this approach is also far less
complex to compute than a variant working with vectorized features: (1) it is almost impossible
to compute the full similarity matrix on a large collection of songs (i.e. over 100 000 songs) and
(2) a SOM with 100 000-dimensional (or larger) vectors would be very expensive to compute. By
using random projections [BM01] one can overcome that, but that would probably come with
a loss of mapping quality. A SOM computed directly with the Gaussians, on the other hand,
requires only a fraction of the computational effort, as the full similarity matrix does not need
to be computed and the original features are used as intended.

3.5.3.2 Subjective Evaluation

To demonstrate the benefits of our method in an example, we use the generalized SOM algorithm
to natively compute a SOM using the timbre component of the PS music similarity measure.
We compare the result to a SOM computed using the rows of the distance matrix as feature
vectors. The SOM grid size is set to 20 × 20 and the GTzan music collection (1 000 songs from
10 music genres, Chapter 2, Section 2.5.1) is used. The SDH visualization which is used in the
following plots creates “islands” (the gray areas) where a high density of objects was found and
water (white) where a low number of objects were found. The labels in the SDH visualization
are set in a majority vote per map unit.

Figure 3.5 shows the result of 300 training iterations for the Gaussian SOM. The SOM has,
at k = 5, an average NN rank distance of 65.3. For comparison, the randomly initialized SOM
(using the same random seed) has a much higher average rank distance (331.1). When looking
at the SOM in Figure 3.5, we can identify six very well clustered areas (highlighted in the figure):
(1) clusters classic music and jazz, (2) country music, (3) reggae and hip-hop, (4) jazz and classic
music, (5) metal and rock and (6) country and blues.

As in the quantitative evaluations, we use the same random seed and compute a SOM using
the vectors from the full distance matrix as features. The resulting SOM has, at k = 5, an
average NN rank distance of 87.8, which is a clear indication of a worse clustering than in the
Gaussian SOM. When looking at the SOM in Figure 3.5 and comparing it to the Gaussian SOM
we can only identify two coherent regions: (1) metal and rock and (2) a large classic and jazz
region. The rest of the map seems rather mixed and spread around the map, further confirming
the results of the quantitative evaluation that our native algorithm yields better SOMs than
vectorizing approaches.
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Gaussians Vectors Random

Nearest Neighbors
Collection SOM Type 1 5 10 20 p̄

ISMIR 2004 (train) 7×7 Gaussians 0.88 0.44 0.44 0.44 67.0%
Vectors 1.05 0.57 0.55 0.53 63.4%

ISMIR 2004 (full) 14×14 Gaussians 1.16 0.36 0.34 0.32 76.2%
Vectors 1.09 0.47 0.44 0.41 69.9%

GTzan 7×7 Gaussians 1.19 0.36 0.34 0.33 52.6%
Vectors 1.43 0.46 0.43 0.42 50.9%

Homburg 14×14 Gaussians 0.73 0.48 0.49 0.49 56.5%
Vectors 0.67 0.55 0.55 0.55 51.7%

1517 Artists 14×14 Gaussians 0.68 0.45 0.45 0.45 36.0%
Vectors 0.79 0.57 0.58 0.58 32.2%

Ballroom 7×7 Gaussians 1.44 0.46 0.43 0.41 56.5%
Vectors 1.13 0.58 0.57 0.57 51.3%

Cretan Dances 7×7 Gaussians 0.78 0.58 0.57 0.58 59.5%
Vectors 0.79 0.77 0.72 0.68 59.0%

LMDB 14×14 Gaussians 1.69 0.47 0.46 0.44 64.5%
Vectors 1.74 0.70 0.68 0.64 47.5%

Popular Rhythms 7×7 Gaussians 0.60 0.62 0.63 0.64 47.9%
Vectors 0.75 0.77 0.75 0.74 45.0%

Figure 3.3: Results of the evaluation of the nine music collection using ME is used as music
similarity algorithm. The bar-plots show the average k-nearest neighbor rank distance for k =
1, 5, 10, 20 for each collection comparing the random, vector and Gaussian SOMs. The table
below shows the average kNN rank distance in relation to a randomly initialized one and the
average map unit precision p̄ for the vector and Gaussian SOMs.
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Gaussians Vectors Random

Nearest Neighbors
Collection SOM Type 1 5 10 20 p̄

ISMIR 2004 (train) 7×7 Gaussians 1.21 0.44 0.43 0.41 69.8%
Vectors 1.04 0.53 0.51 0.49 66.7%

ISMIR 2004 (full) 14×14 Gaussians 1.35 0.34 0.32 0.31 76.0%
Vectors 1.29 0.40 0.38 0.36 74.3%

GTzan 7×7 Gaussians 1.06 0.38 0.37 0.36 52.1%
Vectors 1.27 0.53 0.51 0.48 46.0%

Homburg 14×14 Gaussians 0.67 0.39 0.40 0.40 55.5%
Vectors 0.73 0.62 0.60 0.59 53.9%

1517 Artists 14×14 Gaussians 0.89 0.34 0.34 0.34 35.8%
Vectors 0.92 0.52 0.52 0.53 34.4%

Ballroom 7×7 Gaussians 1.23 0.53 0.53 0.53 55.1%
Vectors 1.10 0.63 0.62 0.61 50.9%

Cretan Dances 7×7 Gaussians 0.76 0.60 0.59 0.60 60.8%
Vectors 0.79 0.72 0.68 0.66 58.9%

LMDB 14×14 Gaussians 1.76 0.29 0.29 0.28 65.7%
Vectors 2.00 0.37 0.36 0.35 61.6%

Popular Rhythms 7×7 Gaussians 0.68 0.49 0.49 0.51 46.0%
Vectors 0.64 0.75 0.73 0.70 48.4%

Figure 3.4: Results of the evaluation of the nine music collection using EP is used as music
similarity algorithm. The bar-plots show the average k-nearest neighbor rank distance for k =
1, 5, 10, 20 for each collection comparing the random, vector and Gaussian SOMs. The table
below shows the average kNN rank distance in relation to a randomly initialized one and the
average map unit precision p̄ for the vector and Gaussian SOMs.
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Figure 3.5: An SDH visualization of a 20×20 SOM for the GTzan collection and PS music
similarity. It is using multivariate Gaussian features and Bregman centroids. Six contiguous
regions can be seen.
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1
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Figure 3.6: An SDH visualization of a 20×20 SOM for the GTzan collection and PS music
similarity. Euclidean vectors (from the distance matrix) are used as features. Two contiguous
regions can be seen.
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3.6 Multivariate Normal (MVN) Matlab Toolbox
This section describes the MVN (MultiVariate Normal) Matlab toolbox which implements all
divergences, centroids and algorithms for the multivariate Gaussian which were described in the
previous sections of this chapter. The toolbox is freely available on the Internet.4.

To see how the toolbox works for example with Elias Pampalk’s music analysis (MA) matlab
toolbox [Pam04], skip to Section 3.6.6 where some examples are shown. Of course usage is not
limited to music similarity models, any multivariate Gaussian features can be processed with
this toolbox.

3.6.1 Initialization
Initialization of MVN Gaussians is done using a single function call:

• mvn1 = mvn_new(co, m). To instantiate a new n-dimensional multivariate Normal
(MVN) object with the toolbox, pass the covariance matrix (co) and mean vector (m)
of your Gaussian to the mvn_new() function. The return value mvn1 is a Matlab structure
with the following attributes:

– co: The full n×n covariance matrix. If the matrix is not positive-definite an exception
is thrown and execution aborted.

– m: The n-dimensional mean vector of the Gaussian.
– ico: For speed reasons we also pre-compute the inverse of the covariance matrix

(n× n) using the fast Cholesky decomposition.
– logdet: We store the logarithm of the determinant of the covariance matrix co.
logdet is computed from the Cholesky decomposition.

To estimate a n-dimensional Gaussian from an m×n data matrix (like a matrix of MFCC
vectors) just use the built-in Matlab functions cov(data) and mean(data).

3.6.2 Divergences
The toolbox implements a variety of divergences which can be used to compute a distance or sim-
ilarity between two MVN models. The divergences implemented are all discussed in Section 3.4.1.
The most common divergence is the Symmetrized Kullback-Leibler divergence.

• d = mvn_div_kl(m1, m2)

Computes the (asymmetric) Kullback-Leibler divergence between the MVN m1 and m2. See
Section 3.4.1.1 for the properties of the KL divergence.

• d = mvn_div_skl(m1, m2)

Computes the symmetric Kullback-Leibler divergence between the MVN m1 and m2. See
Section 3.4.1.2 for the properties of the symmetric KL divergence.

4http://www.ofai.at/~dominik.schnitzer/mnv, visited August 12th, 2011
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• d = mvn_div_js(m1, m2)

Computes the Jensen-Shannon-like divergence between MVN m1 and m2. Since it is not
possible to compute the Jensen-Shannon divergence between two multivariate Normals, we
use an approximation which works quite well in our approximations (Section 3.4.1.4).

• D = mvn_divmat(models, divergence)

This is a meta-function to quickly compute the whole similarity matrix for the given models
and divergence. The parameter models is a struct-array of MVN models and divergence
is a string specifying the divergence to use: 'kl_left', 'kl_right', 'skl', 'js'. The
full distance matrix D is returned in single precision to save memory.

3.6.3 Centroids
• c = mvn_bregmancentroid_kl_left(models)

Computes the left-sided Kullback-Leibler centroid of the given MVN models as defined in
Section 3.4.2.1.

• c = mvn_bregmancentroid_kl_right(models)

Computes the right-sided Kullback-Leibler centroid of the given MVN models as defined
in Section 3.4.2.1.

• c = mvn_bregmancentroid_kl_skl(models, approx)

Computes the symmetrized Kullback-Leibler centroid of the given MVN models (Sec-
tion 3.4.2.2). If the parameter approx is not set, the centroid is computed using a geodesic
walk algorithm. If approx is set to the value 1, an approximative centroid is returned. The
approximative centroid is computed very fast, and is in many cases sufficiently exact.

3.6.4 Clustering
• [centers, assig, qe] = mvn_kmeans(models, k, divergence)

This function implements the k-means clustering algorithm for MVN models. It does
that in regard to the selected divergence. Similar to the mvn_divmat() function the
divergence parameter selects the divergence to use for the k-means clustering: 'kl_left',
'kl_right', 'skl', 'skl_mid'.
Return values are a struct-array with the centers in centers, a vector which assigns each
MVN to a centroid (assig) and a quantization error (qe) according to the divergence
chosen.

• [mapunits D] = mvn_som(models, n, divergence, sel)

This function trains a basic self-organizing map with the generalized SOM algorithm (de-
fined in Section 3.5. The dimensions are specified by the parameter n which in turn creates
a square SOM with the dimension n×n. To compute the SOM the function uses the MVN
models in parameter models and the divergence selected by divergence. The divergence
paramter can be one of these divergences: 'kl_left', 'kl_right', 'skl', 'skl_mid'.
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To restrict the models which should be used to train the SOM, the optional parameter sel
can be set. Set it to the indices you want to include in SOM computation.

The first return value mapunits is a n×n SOM grid where each map unit is represented by
an MVN model. The whole SOM has n2 map units. The structure array has the following
structure:

– x, y the x/y-axis position of the map unit

– n An array which stores the indices of the models which are assigned to this map unit.

The return value D is an (n ∗n)×m matrix, where m is the number of models used during
computation.

3.6.5 Additional Functions

• h = mvn_entropy(m1)

Computes the entropy of the given an N -dimensional MVN m1 with the covariance Matrix
Σ. The entropy h is computed as:

h = 1
2 (N +N ln (2π) + ln |Σ|) (3.37)

• p = mvn_ismetric(D)

Given a divergence matrix D, returns the fraction of triples elements obeying the triangle
inequality.

3.6.6 Usage Examples

Feature Extraction We use the Music Analysis (MA) Matlab toolbox5 by Elias Pampalk to
extract audio music similarity features for the ISMIR2004 Genre/Artist Identification/Classifi-
cation collection which is available freely on the web6. To do so we extract the features with the
command:

1 ma_g1c_FeatureExtraction('ismir04_filelist.txt', 'features_dir/');

The the text file ismir04_filelist.txt lists all filenames of the ISMIR 2004 dataset intro-
duced before. The above command does the feature extraction for all songs given in the text file
and writes the features in the specified directory.

5http://www.pampalk.at/ma/, visited August 12th, 2011
6http://ismir2004.ismir.net/genre_contest/index.htm, visited August 12th, 2011
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Loading the Features To load the features which, we first load the features from the
"G1C_features.mat" file to memory:

1 load features_dir/G1C_features.mat

After that we prepare the features for MVN processing and load the filenames which encode
the music genre in their path.

1 models = mvn_new(squeeze(data.feat.g1.co(1,:,:)),...
2 squeeze(data.feat.g1.m(1,:,:)));
3

4 for i = 2:length(data.filenames)
5 models(i) = mvn_new(squeeze(data.feat.g1.co(i,:,:)),...
6 squeeze(data.feat.g1.m(i,:,:)));
7 end
8

9 filenames = importdata('ismir04_files.txt');
10 [genres grene_assignment] = mvn_fn2class(filenames, 4, '/');

Lines 1-7 initialize the MVN models, line 9-10 loads the filenames and extracts the genre
names from the filenames. We will use the genres of the individual files for classification experi-
ments later on.

Similarity and K-Means Clustering In this step we compute a divergence matrix using
the Symmetric Kullback-Leibler divergence (line 1). For completeness and to check if every-
thing was done correctly, we compute the 1-nearest neighbor classification accuracy (line 2,
nn1_accuracy = 0.7819 in the example).

1 D = mvn_divmat(models, 'skl');
2 nn1_accuracy = mvn_knnclass(D, genre_assignment, 1);
3

4 [centroids c_assignment] = mvn_kmeans(models, 10, 'skl');

In line 4 we compute a randomly initialized k-means clustering of our MVN models. In the return
value centroids we return the 10 centroids found with the k-means clustering. The variable
c_assignment stores the index of the centroid a MVN model is assigned.

Figure 3.7 displays the cluster/music genre assignment confusion matrix which is generated
from the k-means clustering. We clustered the collection into 10 clusters. In the figure it can be
seen that the clustering which was emerging has a jazz/blues cluster (3), multiple classical/world
clusters (1, 2, 4, 5, 6, 8), a strong metal/punk cluster (9), a pop/rock/electronic cluster (7) and
an electronic/pop/rock/jazz cluster (10).

Computing and visualizing a SOM In the next code snippet we compute the SOM and
select the SOM unit labels.

1 [som_grid, som_D] = mvn_som_skl(models, [20 20]);
2
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Figure 3.7: Confusion matrix displaying the genre to k-means cluster assignment. The various
clusters with their relative genre composition can be seen.

3 % Compute the labels for the SOM
4 labels = cell(length(som_grid), 1);
5 for i=1:length(som_grid)
6 if (isempty(som_grid(i).n)) continue; end
7 ng = genre_assignment(som_grid(i).n);
8 check = unique(ng);
9 maxct = 0; maxj = 0;

10 for j=1:length(check)
11 nct = length(find(ng == check(j)));
12 if (nct > maxct)
13 maxj = j;
14 maxct = nct;
15 end
16 end
17 if (maxct < 3) continue; end
18 labels{i} = genres{check(maxj)};
19 end

Finally we visualize the SOM using the Smoothed-Data Histograms Matlab Toolbox7 and
label it according to the genre label names we just prepared in the last code snippet (line 4-19)

1 M.dist_codebook = 1:(20*20);
2 M.topol.msize = [20 20];
3 S = sdh_calculate(som_D, M, 'spread', 10);
4

5 % Visualize SOM using the SDH Toolbox
6 sdh_visualize(S, 'sofn', 0, 'labels', labels);

Figure 3.8 shows the Matlab Figure displaying the SOM using the ME music similarity
measure. The Smoothed-Datagram visualization which was first presented for Music Collections
in [Pam03] is called Islands of Music. When looking at the map we can see that large Classical
Music islands emerged. On the bottom of the visualization we can see an Electronic Music island

7http://www.ofai.at/~elias.pampalk/sdh/, visited August 12th, 2011
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Figure 3.8: Islands Of Music visualization of the ISMIR 2004 collection using standard timbre
music similarity features extracted with the MA Matlab toolbox.
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which is connected to a Metal island. On top of the map there is a World Music island.

3.7 Summary
This chapter gave an introduction to Bregman divergences and their centroids to define the
prerequisites for working natively with multivariate Gaussian models and their divergences. We
reviewed existing literature and linked the recent research in the field of Bregman divergences to
music similarity measures. With that knowledge, any centroid-computing algorithm can be used
natively with Gaussians and their divergences. The remainder presented the main contributions
of this chapter:

We developed a generalized SOM algorithm which uses weighted centroids to directly and
natively cluster Gaussians. In contrast to previous solutions no vectorization of features needs
to be done to compute a SOM. We evaluated the generalized algorithm on all music collections
and show that the algorithm, besides being very efficient, yields higher quality clusterings than
previous approaches using vectorization.

Second, we presented a freely available Octave/Matlab toolbox which was developed to to
ease working with multivariate Gaussian features. The toolbox is available freely on the Internet
and was developed with performance in mind. It includes implementations of all methods which
have been presented in this chapter.
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Reducing Hubs with Mutual
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This chapter presents an unsupervised method which is able to remove hubs in retrieval algo-
rithms. Hubs are data points which keep appearing unwontedly often as nearest neighbors of a
large number of other data points.

Section 4.1 and 4.2 give a general introduction to the hub problem and nearest neighbor search
in high dimensional spaces. In Section 4.3 we show that neighborhood scaling methods are able to
deal with the problem of hubs, and we present a novel global neighborhood scaling method called
Mutual Proximity. Contrary to the local scaling methods, Mutual Proximity has the advantage
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that it can be used with large databases using a straightforward approximation. We do not limit
our evaluation of Mutual Proximity and local scaling in Section 4.4 to music similarity algorithms,
but use 30 public machine learning databases to show the general applicability of the method.
Section 4.5 returns to computer music similarity to show that using Mutual Proximity increases
the retrieval quality (in terms of k-nearest neighbor accuracy and hubness) of all three introduced
similarity algorithms (ME, EP, PS) significantly.

We published the Mutual Proximity method in 2011 [SFSW11]. An adopted version of this
chapter was submitted for publication after finishing this thesis.

4.1 Introduction
In a recent publication Radovanović et al. [RNI10] describe the so-called ‘hubness’ phenomenon
and explore it as a general problem of machine learning in high-dimensional data spaces. Hubs
are data points which keep appearing unwontedly often as nearest neighbors of a large number of
other data points. This effect is particularly problematic in algorithms for similarity search (e.g.,
similarity-based recommenders), as the same similar objects are found over and over again and
other objects are never recommended. The effect has been shown to be a natural consequence
of high dimensionality and as such is yet another aspect of the curse of dimensionality [Bel61b].

A direct consequence of the presence of hubs is that a large number of nearest neighbor rela-
tions in the distance space are asymmetric, i.e., object y is amongst the nearest neighbors of x but
not vice versa. A hub is by definition the nearest neighbor of a large number of objects, but these
objects cannot possibly all be the nearest neighbor of the hub. This observation connects the hub
problem to methods that attempt to symmetrize nearest neighbor relations, such as ‘shared near
neighbors’ [JP73] and ‘local scaling’ [ZP05]. While these methods require knowledge of the local
neighborhood of every data point, we propose a global variant that combines the idea of ‘shared
near neighbor’ approaches with a transformation of distances to nearest neighbor ‘probabilities’
to define a concept we call Mutual Proximity. The approach is fully unsupervised and transforms
an arbitrary distance function to a new probabilistic similarity (distance) measure. Contrary to
the local variants, this new approach lends itself to fast approximation even for very large data
bases and enables easy combination of multiple distance spaces due to its probabilistic nature.

In experiments with a large number of public machine learning databases we show that both
local and global scaling methods lead to:

1. Significant decrease of hubness

2. Increase of k-nearest neighbor classification accuracy

3. Strengthening of the pairwise class stability of the nearest neighbors

To permit other researchers to reproduce the results of this chapter, all databases and the main
evaluation scripts have been made publicly available.1

1http://www.ofai.at/~dominik.schnitzer/mp
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4.2 Related Work
The starting point for our investigations are Aucouturier and Pachet [AP04], who found that
some songs, according to their audio similarity function, were similar to very many other songs
and therefore kept appearing unwontedly often in recommendation lists, preventing other songs
from being recommended at all. They called these songs hub songs. The songs that do not
appear in any recommendation list have been termed ‘orphans’. Similar observations about false
positives in music recommendation that are not perceptually meaningful have been made else-
where [PDW03, FSGP10b, KRNI10]. The existence of the hub problem has also been reported
for music recommendation based on collaborative filtering instead of on audio content analy-
sis [Cel08]. Similar effects have been observed in image [DLM+98, HUW05] and text retrieval
[RNI10], making this phenomenon a general problem in multimedia retrieval and recommenda-
tion.

In the MIR literature, Berenzweig [Ber07] first suspected a connection between the hub
problem and the high dimensionality of the feature space. The hub problem was seen as a direct
result of the curse of dimensionality [Bel61b], a term that refers to a number of challenges related
to to the high dimensionality of data spaces. Radovanović et al. [RNI10] were able to provide
more insight by linking the hub problem to the property of concentration [FWV07] which occurs
as a natural consequence of high dimensionality. Concentration is the surprising characteristic
of all points in a high dimensional space to be at almost the same distance to all other points
in that space. It is usually measured as a ratio between spread and magnitude, e.g., the ratio
between the standard deviation of all distances to an arbitrary reference point and the mean of
these distances. If the standard deviation stays more or less constant with growing dimensionality
while the mean keeps growing the ratio converges to zero with dimensionality going to infinity. In
such a case it is said that the distances concentrate. This has been studied for Euclidean spaces
and other `p norms [AHK01, FWV07]. Radovanović et al. [RNI10] presented the argument that
in the finite case, some points are expected to be closer to the center than other points and are
at the same time closer, on average, to all other points. Such points closer to the center have a
high probability of being hubs, i.e., of appearing in nearest neighbor lists of many other points.
Points which are further away from the center have a high probability of being ‘orphans’, i.e.,
points that never appear in any nearest neighbor list.

The general setting we are considering here is ‘nearest neighbor search’ (NNS). NNS is essen-
tial in many areas of computer science, such as pattern recognition, multimedia search, vector
compression, computational statistics and data mining [SDI06] and, of course, information re-
trieval and recommendation. It is a well defined task: given an object x find the most similar
object in a collection of related objects. In the case of recommendation, the k most similar
objects are retrieved with k << n (n being the number of all objects in the data base). Since
hubs appear in very many nearest neighbor lists, they tend to render many nearest neighbor
relations asymmetric, i.e., a hub y is the nearest neighbor of x, but the nearest neighbor of the
hub y is another point a (a 6= x). This is because hubs are nearest neighbors to very many
data points but only k data points can be nearest neighbors to a hub since the size of a nearest
neighbor list is fixed. This behavior is especially problematic in classification or clustering if x
and y belong to the same class but a does not, violating what Bennett et al. [BFG99] called the
pairwise stability of clusters. Radovanović et al. [RNI10] coined the term bad hubs for points
that show a disagreement of class information for the majority of data points they are nearest
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(a)

(a) Original nearest neighbor rela-
tions

(b)

(b) Desired nearest neighbor rela-
tions

Figure 4.1: Schematic plot of two classes (black/white filled circles). Each circle has its nearest
neighbor marked with an arrow: (a) violates the pairwise stability clustering assumption, (b)
fulfills the assumption. In many classification and retrieval scenarios, (b) would be the desired
nearest neighbor relation for the dataset.

neighbors to. Figure 4.1 illustrates the effect: although a is, in terms of the distance measure,
the correct answer to the nearest neighbor query for y, it may be beneficial to use a distance
measure that enforces symmetric nearest neighbors. Thus a small distance between two objects
should be returned only if their nearest neighbors concur.

This links the hub problem to ‘shared near neighbor’ (SNN) approaches, which try to sym-
metrize nearest neighbor relations. The first work to use common near neighbor information
dates back to the 1970s. Jarvis and Patrick [JP73] proposed a ‘shared near neighbor’ similarity
measure to improve the clustering of ‘non-globular’ clusters. As the name suggests, the shared
near neighbor (SNN) similarity is based on computing the overlap between the k nearest neigh-
bors of two objects. Shared near neighbor similarity was also used by Ertöz et al. [ESK03] to
find the most representative items in a set of objects. Pohle et al. [PKSW06] define a related
similarity measure based on the rank of nearest neighbors. They call their method ‘proximity
verification’ and use it to enhance audio similarity search. Jin et al. [JTHW06] use the reverse
nearest neighbor (RNN) relation to define a general measure for outlier detection.

Related to SNN approaches are local scaling methods, which use local neighborhood informa-
tion to rescale distances between data points. The intention is to find specific scaling parameters
for each point, to be used to tune the pairwise distances in order to account for different local
densities (scales) of the neighborhoods. Local scaling in this sense was first introduced as part of
a spectral clustering method by Lihi and Pietro [ZP05]. It transforms arbitrary distances using
the distance between object x and its k’th nearest neighbor (see Section 4.3.1 below). In the
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context of image retrieval, Jegou et al. [JSHV10] describe a related method called ‘contextual
dissimilarity measure’ (CDM) and show that it reduces the error rates of the retrieval algorithm
significantly, observing “the neighborhood symmetry rate increases”, while at the same time “the
percentage of never seen images decreases”, and in addition that “the most frequent image is re-
turned 54 times in the first 10 positions with the CDM, against 1062 times using the standard L1
distance”. While they do not explicitly make reference to the notion of hubs, their observations
indicate the potential of local distance scaling to mitigate hub-related problems.

4.3 Scaling Methods
In what follows we describe a local scaling method plus our own global variant (which, as we will
show, has certain advantages) and evaluate and compare them in Section 4.4.3. All methods we
describe require a divergence measure with the following properties:

Definition 1 Given a non-empty set M with n objects, each element mx ∈ M is assigned an
index x = 1 . . . n. We define a divergence measure d : M ×M → R with the following properties:

• non-negativity: d(mx,my) ≥ 0, mx,my ∈M ,

• identity: d(mx,my) = 0, ⇐⇒ mx = my, mx,my ∈M ,

• symmetry: d(mx,my) = d(my,mx), mx,my ∈M .

Individual objects mx ∈M are referenced in the text by their index x. The distance between
two objects x and y is denoted as dx,y.

4.3.1 Local Scaling
Local scaling [ZP05] transforms arbitrary distances to so-called affinities (that is, similarities)
according to:

LS(dx,y) = exp
(
− dx,y

2

σx σy

)
, (4.1)

where σx denotes the distance between object x and its k’th nearest neighbor. LS(dx,y) makes
neighborhood relations more symmetric because it includes local statistics of both data points x
and y. The exponent in equation 4.1 can be rewritten as dx,y2/σx σy = (dx,y/σx)(dx,y/σy): only
when both parts in this product are small will the locally scaled similarity LS(dx,y) be high.
That is, x and y will be considered close neighbors only if the distance dx,y is small relative
to both local scales σx and σy. Jegou et al. [JHS07] introduce a closely related variant called
non-iterative contextual dissimilarity measure (NICDM). Instead of using the distance to the
k’th nearest neighbor to rescale the distances, the average distance of the k nearest neighbors
is used. This should return more stable scaling numbers and will therefore be used in all our
evaluations. The non-iterative contextual dissimilarity measure (NICDM) transforms distances
according to:
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NICDM(dx,y) = dx,y√
µx µy

,

where µx denotes the average distance to the k nearest neighbors of object x. The iterative
version of this algorithm performs the same transformation multiple times until a stopping cri-
terion is met. Since these iterations yield only very minor improvements at the cost of increased
computation time, we used the non-iterative version in our evaluations.

4.3.2 Global Scaling - Mutual Proximity
In this section we introduce a global scaling method that is based on: (i) transforming a distance
between points x and y into something that can be interpreted as the probability that y is
the closest neighbor to x given the distribution of all distances to x in the data base; and (ii)
combining these probabilistic distances from x to y and y to x via the product rule. The result is a
general unsupervised method to transform arbitrary distance matrices to matrices of probabilistic
mutual proximity (MP). The first step of transforming distances to probabilities re-scales and
normalizes the distances much like a z-transform. The second step combines the probabilities
to a mutual measure in a way similar to shared near neighbor approaches. In contrast to local
scaling methods MP does not need to determine the local nearest neighbors, but uses global
information about the distances in a collection – that is, a distance matrix – which lends itself
to fast approximation (see Section 4.3.2.2 below).

To convert the distances to mutual nearest-neighbor probabilities, in a first step, for each
object x the average distance µ̂x and the standard deviation σ̂x of its distances dx,i=1...n to all
objects in M are computed, in effect estimating a Gaussian distance distribution X v N (µ̂x, σ̂x)
for each element x. This is based on the assumption that the distances are normally distributed
due to the central limit theorem. The estimated normal distribution X thus models the spread
of distances from x to all other elements in M :

µ̂x = 1
n

n∑
i=1

dx,i, σ̂2
x = 1

n

n∑
i=1

(dx,i − µ̂x)2. (4.2)

Figure 4.2a shows a schematic plot of the probability density function (pdf) that was estimated
for the distances of some object x. The mean distance (µ̂x) is in the center of the density function.
Objects with a small distance to x (that is, objects with high similarity in the original space) find
their distance towards the left of the density function. Note that the leftmost possible distance
in this sketch is dx,x = 0.2

By estimating a normal distributionX from the distances dx,i=1...n, it is possible to reinterpret
any distance dx,y as the probability that y is the nearest neighbor of x, given the distance dx,y

2Strictly speaking, then, our interpretation of this as a normal distribution is incorrect, since distances < 0
are not possible. However, we find the interpretation useful as a metaphor that helps understand why it makes
sense to combine different views as we will do it in this section.
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X ~ N(µ
x
, σ

x
)

d
x,x

f(d
x,i

)

d
x,i=1..n

µ
x

 − σ
x

µ
x

µ
x
+σ

x

(a) The closer other elements are to x, the more to the left is their distance
located on the x-axis of the density function plot. The leftmost possible obser-
vation in the data is the distance dx,x = 0.
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P(X > d
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)
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(b) The shaded area shows the probability that y is the nearest neighbor of x
based on the distance dx,y and X. The closer y is to x (the smaller dx,y) the
higher the probability.

Figure 4.2: Schematic plot of the probability density function of a normal distribution which was
estimated from the distances dx,i=1...n: X v N (µ̂x, σ̂x).
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and the normal X (that is, the probability that a randomly drawn element z will have a distance
dx,z > dx,y):

P (X > dx,y) = 1− P (X ≤ dx,y) = 1−Fx(dx,y).

Fx denotes the cumulative distribution function (cdf) of the normal distribution defined by X.
The probability of an element being a nearest neighbor of x increases the farther left its distance
is on the x-axis of the pdf (see Figure 4.2a). To illustrate that, Figure 4.2b plots the probability
of y being the nearest neighbor of x given dx,y (the gray filled area).

Transforming all original distances into the probability that any point y is a nearest neighbor
of x offers a convenient way to combine this with the opposite view (the probability that x is the
nearest neighbor of y) into a single expression. The combined probability should be high only
if both views concur, which ensures that neighborhood relations become more symmetric since
again local statistics of both data points x and y are included into one overall measure.

Definition 2 Under the assumption of independence, we compute the probability that y is the
nearest neighbor of x given X (the normal defined by the distances dx,i=1...n) and x is the nearest
neighbor of y given Y (the normal defined by the distances dy,i=1...n) and call the resulting
probability Mutual Proximity (MP):

MP (dx,y) = P (X > dx,y ∩ Y > dx,y)
= P (X > dx,y) · P (Y > dx,y), ∀dx,y > 0.

Clearly, the assumption of independence of P (X) and P (Y ) is not warranted in the given
scenario. Still, as we will empirically show in the next section, MP has, similarly to local scaling
methods, very beneficial effects especially in high dimensional data spaces with high hubness.

4.3.2.1 Related Formulation

Besides the Gaussian view on the distances which was pursued in the original MP formulation,
we have found that similar results can also be achieved using a Discrete Uniform Distribution to
define the Mutual Proximity. In a discrete uniform distribution each object (distance) has equal
probability ( 1

n ), thus MPuni can be formulated as:

MPuni(dx,y) = | {dx,i|dx,i > dx,y} |
n

· | {dy,i|dy,i > dx,y} |
n

, i = 1..n.

This formulation is simpler to implement but more expensive to compute, as the cardinalities
in the numerators need to be re-estimated for each distance to transform.

4.3.2.2 Approximation of the Normal Distribution Parameters

The computational cost of estimating the normal distribution parameters for MP grows quadrati-
cally with the size of the dataset. The original formulation (Definition 2) requires the full distance
matrix (that is, all distances) to be computed. Given a fixed data set Xn−1 (consisting of n− 1
instances), if we are presented with a new object xi to analyze (not contained in Xn−1), we
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would have to compute the full distance matrix over Xn−1 ∪ {xi} in order to then be able to
compute MP over this matrix. (This is because MP needs information about all distances to and
from xi.)

To avoid this shortcoming we propose a method that estimates the distance distribution
parameters using the centers of a k-means clustering: MPapprox. We set the number of clusters
to k = 3 as to estimate the average distances and their standard deviations a rough clustering
should suffice. We use the following nomenclature:

k . . . number of clusters (3), cj . . . a cluster found with k-means,
wj . . . number of objects assigned to cj , vj,i . . . ith object assigned to cj .

With the clusters from k-means we estimate the mean (µ̂x) and standard-deviation (σ̂x) for
each model mx using a per-cluster weighted distance:

µ̂x = 1
n

k∑
j=1

wjd(mx, cj), σ̂2
x = 1

n

k∑
j=1

wj (µ̂x − d(mx, cj))2
. (4.3)

The difference to the original estimation of the parameters in Equation 4.2 (Section 4.3.2)
is that only a small fraction of distances (k × n) needs to be computed. However using a
weighted distance from every object to the centroids (Equation 4.3) is biased, as it systematically
underestimates the correct values. To correct the bias we introduce a constant corrj which we
compute for each cluster j.

To do that first we select an object uj ∈ M for each cluster which has a median distance to
cluster j. We define corrj for each cluster j as the difference between (a) the average distance
of all objects assigned to a cluster to uj (µ̂uj

) and (b) the average distance of all objects to the
cluster center (µ̂j):

corrj = µ̂uj − µ̂j = 1
wj

wj∑
i=1

d(uj , vj,i)−
1
n

n∑
i=1

d(cj ,mi). (4.4)

The correction constant corrj which is computed once for each cluster in Equation 4.4 is added
to the per-cluster distance d(mx, cj) in Equation 4.3 to compute the distribution parameters
required for MP. We evaluate MPapprox in Section 4.4.3.1.

4.3.2.3 Linear Combination of Distance Measures

MP yields [0, 1]-normalized similarities. Thus, MP transformation can easily be used to linearly
combine multiple different distance measures d1 and d2:

d = ω1 MP (d1) + ω2 MP (d2).

for some combination weights ω1,2. Similar to a global zero-mean unit-variance normalization,
each object’s distances are also standardized by their respective mean and standard deviation.
Thus, no distance measure can dominate the other in this combination This property is useful
in scenarios where multiple different distance measures (describing different aspects of a phe-
nomenon) need to be linearly combined. We will be using MP to linearly combine multiple
similarity measures in Section 4.5 with music similarity measures.
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4.4 Evaluation
To investigate the effects of using local neighborhood scaling methods and MP, we evaluate
them on 30 public machine learning datasets. Each dataset is characterized by the following
parameters: name/origin, number of classes, size/number of items n and data dimensionality d.
For each dataset we evaluate the original distance space and compare it to the distances that are
generated by the local scaling method and by MP.

4.4.1 Benchmarks
To quantify the impact of the two methods, a number of properties and quality measures are
computed for the original and the new distances. The characteristics which we compute for each
dataset are:

Leave-One-Out k-Nearest Neighbor Classification Accuracy (Ck) We report the k-
nearest neighbor (kNN) classification accuracy using leave-one-out classification, where classifi-
cation is via majority vote among the k nearest neighbors, with the class of the nearest neighbor
used for breaking ties. We denote the k-NN accuracy as Ck. In the context of a retrieval problem,
higher values would indicate better retrieval quality.

Hubness (Sk) We also compute the hubness for each object x according to Radovanović et
al. [RNI10]. Hubness is defined as the skewness of the distribution of k-occurrences (i.e., number
of k-nearest neighbor lists in which x appears) Nk:

Sk =
E
[
(Nk − µNk

)3]
σ3
Nk

Positive skewness indicates high hubness, negative values low hubness. The hubness of an entire
dataset X is defined as the average Sk over all objects in X.

Goodman-Kruskal Index (IGK) The Goodman-Kruskal Index [GB03] is a clustering quality
measure that relates the number of concordant (Qc) and discordant (Qd) tuples (di,j , dk,l) of a
distance matrix.

• A tuple is concordant if its items i, j are from the same class, items k, l are from different
classes and di,j < dk,l.

• A tuple is discordant if its items i, j are from the same class, items k, l are from different
classes and di,j > dk,l.

• A tuple is not counted if it is neither concordant nor discordant, that is, if di,j = dk,l.

The Goodman-Kruskal Index (IGK) is defined as:

IGK = Qc −Qd
Qc +Qd

.
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IGK is bounded to the interval [−1, 1], and the higher IGK , the more concordant and fewer
discordant quadruples are present in the dataset. Thus a large index value indicates a good
clustering (in terms of pairwise stability – see section 4.2).

Other indices to compare clustering algorithms like the classic Dunn’s Index or Davies-Bouldin
Index [BP98] cannot be used here as their values do not allow a comparison across different
distance measures.

Intrinsic Dimensionality (dmle) To further characterize each dataset we compute an esti-
mate of the intrinsic dimensionality of the feature spaces. Whereas the embedding dimension is
the actual number of dimensions of a feature space, the intrinsic dimension is the – often much
smaller – number of dimensions necessary to represent a data set without loss of information.
It has also been demonstrated that hubness depends on the intrinsic rather than embedding
dimensionality [RNI10]. We use the maximum likelihood estimator proposed by Levina and
Bickel [LB05], which was also used by Radovanović et al. [RNI10] to characterize the datasets.

Percentage of symmetric neighborhood relations We call a nearest neighbor relation
between two points x and y ‘symmetric’ if the following holds: object x is a nearest neighbor
of y if and only if y is also the nearest neighbor of x. As both examined methods aim at
symmetrizing neighborhood relations, we report the percentage of symmetric relations at different
neighborhood sizes k.

4.4.2 Public Machine Learning Datasets
We evaluate the proposed method by applying it to 30 different public machine learning datasets.
The datasets include problems from the general machine learning field, and the bio-medical,
image, text and music retrieval domains. We use the following datasets:

• The UCI Machine Learning Repository3 (UCI, see [FA10]) datasets: arcene, gisette, mfeat-
pixels/karhunen/factors, dexter, mini-newsgroups, dorothea, reuters-transcribed.

• The Kent Ridge bio-medical datasets4 (KR): amlall, lungcancer and ovarian-61902.

• The LibSVM datasets5 (LibSVM, see [CL01]): australian, diabetes, german numbers, liver-
disorders, breast-cancer, duke (train), heart, sonar, colon-cancer, fourclass, ionosphere,
splice.

• The Music Information Retrieval Evaluation eXchange6 (MIREX) datasets (Mirex, see
[Dow08]): ballroom and ismir2004.

• Two music artist web pages and tweets datasets7 (CP, see [Sch10]): c1ka-twitter and c224a-
web.

3http://archive.ics.uci.edu/ml/
4http://datam.i2r.a-star.edu.sg/datasets/krbd/
5http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
6http://www.music-ir.org/mirex
7http://www.cp.jku.at/people/schedl/datasets.html
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For the general machine learning datasets from the statistical or biological domains no feature
extraction is necessary. The feature vectors can be downloaded directly from the respective
repositories. However, before using the features we standardized the datasets with their collection
mean and variance. These general machine learning datasets use the standard Euclidean distance
(denoted as `2) as similarity measure.

The text retrieval datasets (reuters-transcribed, c224a-web, movie-reviews, dexter, mini-
newsgroups, c1ka-twitter8) need to be preprocessed before evaluating them. To this end we
employ stop-word removal and stemming. They are transformed into the bag-of-words represen-
tation, and standard tf · idf (term frequency · inverse document frequency) weights are computed
(see for example [BYRN99b]). The word vectors are normalized to the average document length.
Individual document vectors are compared with the cosine distance (denoted as cos).

For the image retrieval dataset (corel) normalized color histograms are computed as fea-
tures. They show reasonable classification performance despite their simplicity, as Chapelle et
al. [CHV99] show. The three 64-dimensional color histograms are concatenated into a single
vector and compared using the Euclidean distance (`2).

To extract the features for the two music information retrieval datasets (ismir2004, ballroom)
we use the ME and the symmetrized Kullback-Leibler divergence (denoted with skl).

4.4.3 Results

Tables 4.1 and 4.2 show the results of the evaluations conducted on the afore introduced 30
public datasets. The collections have very diverse properties. There are collections like fourclass
or liver-disorders with very low dimensionality (d = 2 and d = 6), as well as datasets with
very high dimensionality, such as dorothea (d = 100 000) or c1ka-twitter (d = 49 820). Related
to that, column dmle lists the intrinsic dimensionality according to the maximum likelihood
estimator. Using the intrinsic dimensionality estimate we can see that there are datasets where
the data is originally represented using high-dimensional feature vectors, although the data’s
intrinsic dimensionality is quite low. For example the ovarian_61902 dataset has an embedding
dimension of d = 15 154 but its estimated intrinsic dimension is only dmle = 9.

The evaluation results in Tables 4.1 and 4.2 are sorted by the hubness Sk=5 of the original
distance space (printed in bold). In subsequent plots individual collections are referenced by their
numbers as given in Tables 4.1 and 4.2. The columns Ck=1/Ck=5 show the k-nearest neighbor
classification rates of the collections. The classification rates with the original distances, the local
scaling (NICDM) and the global scaling (MP) are documented. For convenience the column +/-
shows the difference in classification accuracy, in terms of absolute percentage points, between
the original distances and NICDM/MP. All improvements compared to the original distances
are printed in bold. Statistically significant differences are marked with an asterisk (McNemar’s
test, df = 1, α = .05 error probability, see e.g., Salzberg [Sal97]).

Looking at the tables a first observation is that very high-dimensional data sets (in terms of
their intrinsic as well as their actual embedding dimensionality) also tend to have high hubness.
This is in agreement with the results of Radovanović et al. [RNI10] and the theory that hubness
is a consequence of high dimensionality.

8Set c1ka-twitter equals c3ka-twitter from CP, omitting artists classified as ‘rock’ to balance the data.
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Name/Src. Cls. n d dmle Dist. Ck=1 +/- Ck=5 +/- Sk=5 IGK

fourclass (sc) 2 862 2 2 `2 100% 100% 0.15 0.22
1. LibSVM NICDM 100% 0 100% 0 0.06 0.21

MP 100% 0 100% 0 0.07 0.22
liver-disorders (sc) 2 345 6 6 `2 62.6% 60.6% 0.39 0.00
2. UCI NICDM 63.2% 0.6 65.8% 5.2* -0.04 0.03

MP 61.7% -0.9 62.6% 2.0 0.46 0.01
australian 2 690 14 3 `2 65.5% 68.8% 0.44 0.13
3. LibSVM NICDM 65.7% 0.2 69.4% 0.6 -0.09 0.14

MP 65.1% -0.4 69.6% 0.8 0.41 0.14
diabetes (sc) 2 768 8 6 `2 70.6% 74.1% 0.49 0.20
4. UCI NICDM 69.8% -0.8 74.1% 0 0.04 0.15

MP 70.2% -0.4 73.7% -0.4 0.22 0.19
heart (sc) 2 270 13 7 `2 75.6% 80.0% 0.50 0.35
5. LibSVM NICDM 75.9% 0.3 79.3% -0.7 -0.00 0.27

MP 75.9% 0.3 80.7% 0.7 0.11 0.36
ovarian-61902 2 253 15 154 10 `2 95.3% 93.7% 0.66 0.20
6. KR NICDM 95.7% 0.4 93.3% -0.4 -0.10 0.19

MP 94.5% -0.8 93.7% 0 -0.03 0.20
breast-cancer (sc) 2 683 10 5 `2 95.6% 97.4% 0.71 0.89
7. LibSVM NICDM 95.8% 0.2 97.1% -0.3 0.19 0.42

MP 95.3% -0.3 97.2% -0.2 0.44 0.91
arcene 2 100 10 000 23 `2 81.0% 77.0% 0.78 0.02
8. UCI NICDM 80.0% -1.0 74.0% -3.0 0.31 0.06

MP 81.0% 0 75.0% -2.0 0.54 0.04
mfeat-factors 10 2 000 216 7 `2 95.0% 94.7% 0.79 0.71
9. UCI NICDM 94.8% -0.2 94.7% 0 0.15 0.76

MP 94.7% -0.3 94.7% 0 0.43 0.77
colon-cancer 2 62 2 000 11 `2 72.6% 77.4% 0.81 0.19
10. LibSVM NICDM 69.4% -3.2 82.3% 4.9 0.08 0.18

MP 69.4% -3.2 83.9% 6.5 -0.08 0.20
ger.num (sc) 2 1 000 24 8 `2 67.5% 71.7% 0.81 0.07
11. LibSVM NICDM 66.8% -0.7 72.0% 0.3 0.32 0.03

MP 67.8% 0.3 70.9% -0.8 0.34 0.07
amlall 2 72 7 129 32 `2 91.7% 93.1% 0.83 0.31
12. KR NICDM 93.1% 1.4 97.2% 4.1 0.56 0.33

MP 91.7% 0 94.4% 1.3 -0.00 0.35
mfeat-karhunen 10 2 000 64 15 `2 97.4% 97.4% 0.84 0.76
13. UCI NICDM 97.2% -0.2 97.6% 0.2 0.27 0.74

MP 97.0% -0.4 97.3% -0.1 0.48 0.79
lungcancer 2 181 12 533 60 `2 98.9% 100.0% 1.07 0.56
14. KR NICDM 99.4% 0.5 98.9% -1.1 0.31 0.50

MP 100.0% 1.1 99.4% -0.6 0.21 0.55
c224a-web 14 224 1 244 41 cos 86.2% 89.3% 1.09 0.79
15. CP NICDM 87.9% 1.7 92.4% 3.1* 0.42 0.89

MP 87.5% 1.3 92.0% 2.7 0.51 0.89

Table 4.1: Evaluation results of public machine learning datasets ordered by ascending hubness
Sk=5 of the original distance space. Results are given for data sets with small hubness, see
section 4.4.3 for details.
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Name/Src. Cls. n d dmle Dist. Ck=1 +/- Ck=5 +/- Sk=5 IGK

mfeat-pixels 10 2 000 240 12 `2 97.4% 97.8% 1.18 0.73
16. UCI NICDM 97.2% -0.2 97.3% -0.5 0.24 0.74

MP 97.4% 0 97.1% -0.7* 0.44 0.78
duke (train) 2 38 7 129 16 `2 73.7% 68.4% 1.37 0.02
17. UCI NICDM 81.6% 7.9 68.4% 0 0.43 0.06

MP 76.3% 2.6 68.4% 0 0.43 0.04
corel1000 10 1 000 192 9 `2 70.7% 65.2% 1.45 0.33
18. Corel NICDM 72.9% 2.2* 72.0% 6.8* 0.39 0.47

MP 71.1% 0.4 67.6% 2.4* 0.68 0.50
sonar (sc) 2 208 60 11 `2 87.5% 82.2% 1.54 0.07
19. UCI NICDM 87.0% -0.5 87.0% 4.8 0.47 0.08

MP 89.9% 2.4 85.1% 2.9 0.50 0.09
ionosphere (sc) 2 351 34 13 `2 86.9% 85.5% 1.55 0.31
20. UCI NICDM 92.3% 5.4* 94.3% 8.8* 0.28 0.07

MP 92.6% 5.7* 90.3% 4.8* 0.87 0.26
reuters-transcribed 10 201 2 730 70 cos 44.3% 49.3% 1.61 0.38
21. UCI NICDM 45.3% 1.0 52.7% 3.4 0.63 0.32

MP 44.8% 0.5 50.7% 1.4 0.86 0.44
ballroom 8 698 820 12 skl 54.3% 48.1% 2.98 0.15
22. Mirex NICDM 57.2% 2.9 51.6% 3.5* 1.09 0.20

MP 56.2% 1.9 53.3% 5.2* 1.16 0.19
ismir2004 6 729 820 25 skl 80.4% 74.1% 3.20 0.37
23. Mirex NICDM 83.8% 3.4* 79.0% 4.9* 0.77 0.21

MP 82.6% 2.2* 77.4% 3.3* 1.09 0.42
movie-reviews 2 2 000 10 382 28 cos 71.1% 75.7% 4.07 0.05
24. PaBo NICDM 72.0% 0.9 76.0% 0.3 1.22 0.07

MP 72.5% 1.4 76.1% 0.4 0.85 0.07
dexter 2 300 20 000 161 cos 80.3% 80.3% 4.22 0.10
25. UCI NICDM 84.3% 4.0 86.0% 5.7* 2.02 0.13

MP 84.3% 4.0 88.0% 7.7* 1.83 0.14
gisette 2 6 000 5 000 149 `2 96.0% 96.3% 4.48 0.16
26. UCI NICDM 97.2% 1.2* 98.1% 1.8* 0.78 0.20

MP 97.3% 1.3* 97.9% 1.6* 0.89 0.21
splice (sc) 2 10 00 60 27 `2 69.6% 69.4% 4.55 0.07
27. LibSVM NICDM 73.3% 3.7* 79.3% 9.9* 1.51 0.11

MP 72.5% 2.9 77.8% 8.4* 0.57 0.09
mini-newsgroups 20 2 000 8 811 188 cos 64.4% 65.6% 5.14 0.47
28. UCI NICDM 67.2% 2.8* 68.5% 2.9* 1.32 0.52

MP 67.7% 3.3* 68.3% 2.7* 1.01 0.58
dorothea 2 800 100 000 201 `2 90.6% 90.2% 12.91 0.21
29. UCI NICDM 92.2% 1.6 93.0% 2.8* 11.72 0.21

MP 92.4% 1.8 92.6% 2.4* 10.26 0.21
c1ka-twitter 17 969 49 820 46 cos 31.9% 26.6% 14.63 0.08
30. CP NICDM 47.8% 15.9* 53.0% 26.4* 2.94 0.33

MP 48.7% 16.8* 50.5% 23.9* 3.39 0.16

Table 4.2: Evaluation results of public machine learning datasets ordered by ascending hubness
Sk=5 of the original distance space. Results are given for data sets with large hubness, see
section 4.4.3 for details.
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Figure 4.3: Improvements in accuracy (absolute percentage points) and hubness evaluated with
k = 1
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Figure 4.4: Improvements in accuracy (absolute percentage points, significant differences marked
with an asterisk) and hubness evaluated with k = 5
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Figure 4.5: Improvements in accuracy (absolute percentage points, significant differences marked
with an asterisk) and hubness evaluated with k = 20
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By looking at the classification rates (columns Ck=1 and Ck=5) it can also clearly be ob-
served that the higher the hubness and intrinsic dimensionality, the more beneficial, in terms of
classification accuracy, is NICDM and MP. For datasets with high hubness (in the collections we
used, a value above 1.4 seems to be a limit) the increase in classification rates is notable. For
Ck=1, the accuracy gain ranges from rather moderate 1 to up to 7− 8 percentage points, and in
the case of c1ka-twitter it is 15.9 percentage points for NICDM and 16.8 percentage points for
MP. For Ck=5 the trend is even clearer. Whereas only three changes in accuracy (relative to the
original distances) are significant for data sets with low hubness (Sk=5 <= 1.4, data sets 1 – 17),
32 changes in accuracy are significant for data sets with high hubness (Sk=5 > 1.4, data sets 18
–30). There is only a single and rather small negative change (mfeat-pixels, distance based on
MP, −0.7%) that is statistically significant.

Figures 4.3, 4.4 and 4.5 (left hand sides) present these results in bar plots where the y-axis
shows the index of the data sets (ordered according to hubness as in Tables 4.1 and 4.2) and the
bars show the increase or decrease of classification rates. The bar plots also directly show how
MP compares to NICDM in terms of classification accuracy for k = 1, 5, 20. Generally speaking,
results for MP and NICDM are very comparable especially for lower values of k. As for k = 1, MP
and NICDM perform equally well and there is no statistically significant difference between MP
and NICDM (McNemar’s test, df = 1, α = .05 error probability). Based on the same statistical
testing procedure, results for NICDM and k = 5 are significantly better than for MP for data
sets 18, 20, 26 and 30 (marked with asterisks in Figure 4.4). Results for NICDM and k = 20
are significantly better than for MP for 9 out of 30 data sets and MP is superior to NICDM for
data set 25 (all significant differences are marked with asterisks in Figure 4.5). Despite these
significant differences, the general tendency of both MP and NICDM is comparable in the sense
that if there is an improvement compared to the original distances, it can be seen for both MP
and NICDM.

Another observation from the results listed in Tables 4.1 and 4.2 is that both NICDM and
MP reduce the hubness of the distance space for all data sets to relatively low values. The
hubness Sk=5 decreases from an average value of 2.5 (original) to 0.95 (MP) and 0.94 (NICDM),
indicating a well balanced distribution of nearest neighbors. The impact of MP and NICDM
on the hubness per data set is plotted in Figures 4.3, 4.4 and 4.5 (right hand sides). It can be
seen that both MP and NICDM lead to lower hubness (measured for Sk=1,5,20) compared to
the original distances. The effect is more pronounced for data sets having large hubness values
according to the original distances.9

More positive effects in the distances can also be seen in the increase of concordant (see
Section 4.4 for the definition) distance quadruples indicated by higher Goodman-Kruskal index
values (IGK). This index improves or remains unchanged for 26 out of 30 data sets in the case of
using MP. The effect is not so clear for NICDM, which improves the index or leaves it unchanged
for only 17 out of 30 data sets. The effect of NICDM on IGK is especially unclear for data with
low hubness (data sets 1 – 17).

Finally we also checked whether both MP and NICDM are able to raise the percentage of
symmetric neighborhood relations. Results for k = 5 and k set to 10% of the collection size
(denoted with k = 10%) are shown in Figure 4.7. As can be seen, with the single exception of

9A notable exception is dataset 29 (“dorothea”) where the reduction in hubness is not so pronounced. This
may be due to the extremely skewed distribution of its two classes (9:1).
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data set 30, the symmetry for all data sets with both MP and NICDM increases. The average
percentage of symmetric neighborhoods across all data sets for k = 5 is 45 for the original
distances, 60 for MP and 70.5 for NICDM. The numbers for k = 10% are 53 (original), 71.1
(MP) and 70.9 (NICDM).

4.4.3.1 Mutual Proximity Approximation

We also compared MP and its approximation MPapprox (see Section 4.3.2.2) regarding their
performance in terms of accuracy and hubness. Results for MPapprox depicted in Figure 4.6
are averages over ten approximations. Accuracy results are very comparable, there is only one
statistically significant difference (data set 9, McNemar’s test, df = 1, α = .05 error probability).
The decrease in hubness is also equally strong for MP and MPapprox.

Figure 4.8 shows how well the approximation of the parameters has worked in the experiment.
We can see that the mean (µ̂) parameter can be estimated very well. In contrast to the standard
deviation (σ̂) parameter which is in many cases estimated off by more than 30%. A more accurate
approximation of parameters can be obtained if the number of clusters is increased. However, as
hubness and classification rates are already very close to the original MP method, the proposed
parameter estimation with only three clusters already seems to suffice.

4.4.4 Summary of results
Our main result is that both global (MP) and local (NICDM) scaling show very beneficial effects
concerning hubness on data sets that exhibit high hubness in the original distance space. Both
methods are able to decrease the hubness, raise classification accuracy and improve other indi-
cators like percentage of concordant distance quadruples or symmetric neighborhood relations.
In case of MP, its approximation MPapprox is able to perform at equal level with substantially
less computational cost (O(n), as opposed to O(n2) for both MP and local scaling). As a global
approximation of scaling values is not possible for NICDM, the approximation of MP will be
essential if it is used in large databases.

For data sets exhibiting low hubness in the original distance space, improvements are much
smaller or non-existent but there is no degradation of performance.

4.5 Mutual Proximity and Content-Based Music Similar-
ity

This section uses Mutual Proximity, its approximation (Section 4.3.2.2) and the linear com-
bination (Section 4.3.2.3) of multiple similarity measures with the music similarity algorithms
investigated throughout this thesis. The features which are used in the music similarity algo-
rithms are of high dimensionality and exhibit all very high hubness in their nearest neighbors.
The high hubness of the music similarity algorithms has a notable impact on the retrieval quality
of the algorithms: the same songs are retrieved for a large number of query songs (hubs) and
simultaneously those hub songs push out other songs from the nearest neighbor lists so that these
songs are never recommended at all.
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Figure 4.8: Plot (a) and (b) show a visualization of the approximation of the normal distribution
parameters on two selected databases. The objects are sorted by the exact values to compare
the estimation with the exact value. A perfect estimate would overlap with the exact values.
Plot (c) displays the averaged mean and standard deviation estimates for all databases.
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Orphaned
Collection ME EP

ISMIR 2004 (Train) 16.5% 15.1%
ISMIR 2004 (Full) 16.3% 12.7%
GTzan 15.2% 12.5%
Homburg 31.5% 25.3%
1517 Artists 25.2% 20.1%
Ballroom Dataset 21.2% 15.8%
Cretan Dances 18.9% 14.4%
Latin Music Database 11.3% 9.1%
Popular Rhythms 28.5% 25.9%

Table 4.3: Percentage of orphaned songs in the different databases in the k = 5 nearest neighbor
lists.

To illustrate this particularly aspect we compute the number of songs which are never re-
trieved in a music recommendation system using the top 5 nearest neighbors. Table 4.3 shows
the percentage of songs of each collection which are never found in the top 5 nearest neighbors.
These songs are orphaned. From the table we can see that the percentage of orphaned songs
ranges from 9.1% to 31.5%, i.e., in the most extreme case of the Homburg collection we can
see that over 31% of the songs are never occurring as nearest neighbors of any song. Thus a
music recommendation system relying solely on these techniques would never recommend almost
a third of the songs available in the database. This points to a severe limit of the performance
of a system which was designed to discover new music. We have published an analysis of the
limitations of a content-based music recommendation service where these problematic aspects
are studied in a real application [FGS10]. We found that hubness can be reduced in linear com-
binations of multiple independent similarity measures. Accordingly we observe in Table 4.3 that
EP (a linear combination of ME similarity with a rhythmic similarity) exhibits lower numbers
of orphaned objects in all collections. But still, the number of orphaned songs is very high.

The remainder of this section investigates if MP can also improve the retrieval quality of the
music similarity algorithms which are affected by high hubness. We measure the same character-
istics as we have done in the previous section. To study the effects of using MP with the selected
music similarity algorithms we evaluate them in terms of their hubness and classification/retrieval
rates and finally show how the orphaned objects evolved.

4.5.1 Algorithms

Using MP with one of the content-based music similarity algorithms is straight-forward. Each
algorithm is discussed shortly in the following paragraph. To use the MP approximation
(MPapprox), we use the approximation routine as it was defined in Section 4.3.2.2. The k-
means routine for Gaussians and Kullback-Leibler divergences (SKL, JS) which is required in all
algorithms the approximation was defined in Chapter 3.
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Increase in Ck with MP
Collection Algorithm Artist Filter 1 5 10 20
ISMIR 2004 (Train) ME no 2.2 0.4 3.6 0.0

ME (JS) no 3.4 1.2 4.0 1.8
EP no 1.1 2.6 2.5 0.7
ME yes 1.0 1.7 1.4 1.2
ME (JS) yes 3.2 2.3 1.9 1.3
EP yes 1.2 1.2 1.5 1.5

ISMIR 2004 (Full) ME no 1.9 2.4 4.7 1.9
ME (JS) no 3.7 2.4 2.8 2.9
EP no 1.6 -0.5 0.5 3.2

GTzan ME no 3.7 6.7 0.6 4.3
ME (JS) no 3.4 6.2 6.6 2.2
EP no 1.8 2.8 0.9 0.6

Homburg ME no 4.5 1.3 3.8 1.5
ME (JS) no 3.8 2.9 0.7 2.0
EP no 2.9 0.8 2.8 1.5
ME yes 4.3 2.8 3.1 2.5
ME (JS) yes 3.6 3.0 3.0 3.1
EP yes 2.7 2.3 2.4 2.4

1517 Artists ME no 2.4 2.9 2.3 1.8
ME (JS) no 3.8 3.7 2.8 2.2
EP no 2.0 3.0 1.9 1.6
ME yes 1.3 2.2 2.2 2.0
ME (JS) yes 1.9 2.8 2.3 2.4
EP yes 1.5 2.1 1.7 1.8

Ballroom Dataset ME no 2.0 3.9 4.7 2.0
ME (JS) no 5.0 5.4 9.7 2.4
EP no 3.4 4.6 1.4 3.6

Cretan Dances ME no 1.7 10.6 -3.3 -4.4
ME (JS) no 7.2 6.1 2.8 -1.7
EP no 7.2 0.0 4.4 3.9

Latin Music Database ME no 1.1 2.1 2.9 3.4
ME (JS) no 1.0 2.1 4.2 5.1
EP no 0.4 1.7 2.3 1.8
ME yes 3.5 4.6 3.4 3.9
ME (JS) yes 3.6 4.3 5.0 5.2
EP yes 3.6 2.3 2.5 2.2

Popular Rhythms ME no 2.9 3.2 1.7 8.1
ME (JS) no 6.9 -0.3 4.9 -2.6
EP no 0.6 -1.2 5.2 1.4

Table 4.4: Increase in Classification Accuracies with MP, given in percentage-points
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Mandel-Ellis (ME)

MP can directly be used with the ME music similarity algorithm as the similarity is a single
divergence computed using either the symmetrized Kullback-Leibler (SKL) divergence or the
Jensen-Shannon divergence (JS). We have already introduced these divergences in Chapter 3
and we just apply the MP method (either approximated or not) to the divergence (denoted as
dt):

MEMP = MP (dt). (4.5)

In its original implementation ME uses the SKL divergence, but in the evaluation we also evaluate
the algorithm with the JS divergence.

Elias Pampalk (EP)

In contrast to ME, EP uses a linear combination of multiple different similarity measures in its
similarity measure. The SKL is used to compute similarity for the music timbre component dt and
the Euclidean distance is used to compute similarity between the three rhythm components (dFP ,
dFPg, dFPb). In the original algorithm precomputed normalization values for each component are
used to allow linearly combining the four measures. When using MP to linearly the normalization
is not necessary to combine the measures. MP already normalizes the similarities. So the
transformed measure looks like this:

EPMP = 0.7MP (dt) + 0.1MP (dFP ) + 0.1MP (dFPg) + 0.1MP (dFPb). (4.6)

To use the MP approximation the k-means clustering has to be done for each component. Each
similarity measure requires its own MP parameter estimation.

Pohle-Schnitzer (PS)

PS already uses a preliminary variant of MP. In the following experiments we will benchmark all
other algorithms with MP against PS. PS uses MP in its linear combination of timbre (dt) and
rhythm (dr) similarities:

PSMP = 0.7MP (dt) + 0.3MP (dr). (4.7)

4.5.2 Evaluation

To evaluate the impact of MP on the content based music similarity algorithms we look at their
change in hubness and classification accuracy. In all forthcoming evaluations we use MPapprox
and report results averaged over 10 independent runs. To compute MPapprox we used three
clusters.
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Figure 4.9: Hubness values (Sk=5) decline notably when using the MP. The original algorithm
hubness is depicted with the dotted lines. MP produces nearest neighbors with notably lower
hubness values around 1 and 1.5. The collections are sorted according to their hubness values
computed for their standard MP algorithm. We use a different line style for PS as, contrary to
ME and EP, it is only defined with MP.
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Figure 4.10: Comparing the k = 5-occurrences of the ME/ME (JS)/EP content based audio
similarity algorithm with the Nk=5 MP produces. Objects are more uniformly distributed with
MP than with the original algorithm. For further comparison the k = 5 occurrence of a random
distance matrix is also shown.
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4.5.2.1 Hubness

Figure 4.9 shows the hubness exhibited by the three algorithms on the music collections we use
throughout the thesis. In the original algorithms (the dotted lines) the hubness values are very
high. Hubness in the original algorithms has a minimum value of 1.48 and a maximum of 4.7. It
is notable that EP has in almost all cases a lower hubness than ME. These high hubness values
sharply decrease in all collections if MP is applied. The minimum hubness value decreases to 0.6
and the maximum hubness value to 1.6.

High hubness means that the skewness of the k-occurrence (Nk) in the nearest neighbors is
high. Figure 4.10 plots three histogram of the k = 5 occurrences for ME. The first column of
plots shows the Nk=5 distribution for the original nearest neighbors. In all three example cases
(ISMIR 2004 (Train), Latin Music Database and Homburg) we see that this distribution is highly
skewed for ME, ME (JS) and EP. We can see the high number of orphaned songs in the first
bin of the histogram. The skewness of the Nk=5 distribution visibly flattens and the number of
orphans is notably reduced when using MP (second column of plots in Figure 4.10). The third
column of plots in Figure 4.10 shows randomly generated Nk=5, exhibiting the most symmetric
Nk distribution of objects.

4.5.2.2 Leave-one-out nearest neighbor classification accuracy

The detailed results of the classification experiments with MP are shown in Table 4.4. The table
compares the original classification accuracies with the classification accuracies obtained with
MP. It can be clearly seen that in almost all cases the classification accuracy increases with MP,
from 3 (on average) up to 7.2 percentage points. Two exceptions are the Cretan Dances and
Popular Rhythms collections where the classification accuracies for k = 10, 20 decrease with MP.
In these collections the size of classes is sometimes smaller than k. Figure 4.11a compares the
classification accuracies of the algorithms ME, ME (JS) and EP with PS. PS already uses MP in
its original implementation. Interestingly, if we compare these results with the performance of
the results of their original algorithms (Chapter 2, Section 2.5) PS does not clearly outperform
the other algorithms any more.

On the contrary – in the case of the collections ISMIR 2004 (Train)/(Full), GTzan, Homburg,
1517 Artists, LMDB and Cretan Dances the original ME algorithm with the Jensen-Shannon
divergence (JS) achieves the same results as PS. However PS still performs notably better on
two rhythmic collections: Ballroom and Popular Rhythms. If we look at the performance of the
music similarity algorithms if an artist filter is used in the evaluation, PS can still outperform
the other algorithms, but no longer of the huge differences we have seen in Chapter 2.

4.5.3 Discussion
Similarly to the results we have found for a variety of machine learning datasets in Section 4.4,
using MP for a music similarity algorithm to transform music similarity spaces leads to lower
hubness and higher classification rates, improving the overall performance of the music similarity
algorithm.

In parallel with the decrease of hubness (the flattening of the Nk distribution) we can also
observe that the number of orphaned songs in the nearest neighbor lists is significantly reduced.
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Figure 4.11: Music genre classification rates Ck=1 of all algorithms using MP. Using MP reduces
the difference in classification performance between PS and the other music similarity algorithms
if Compared this to the original results of Section 2.5
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Orphaned songs in Nk=5

Collection MEMP ME EPMP EP P SMP

ISMIR 2004 (Train) 5.8% 16.5% 7.7% 15.1% 9.1%
ISMIR 2004 (Full) 6.6% 16.3% 7.4% 12.7% 7.6%
GTzan 6.7% 15.2% 6.9% 12.5% 8.0%
Homburg 9.1% 31.5% 10.4% 25.3% 13.6%
1517 Artists 10.0% 25.2% 10.4% 20.1% 11.9%
Ballroom Dataset 8.7% 21.2% 7.0% 15.8% 8.5%
Cretan Dances 6.7% 18.9% 5.6% 14.4% 11.0%
Latin Music Database 6.3% 11.3% 5.5% 9.1% 5.9%
Popular Rhythms 10.4% 28.5% 8.4% 25.9% 8.6%

Table 4.5: Percentage of orphaned songs in the different databases in the k = 5 nearest neighbor
lists.

Table 4.5 compares the number of orphaned songs in Nk=5 of the different algorithms. We can
see that MP reduces the number of songs which are never reached on average, by almost 60%.
In the Homburg collection where over 31% of the songs could never make it in the k = 5 nearest
neighbors, only 9.1% are orphaned after using MP.

As in addition to these aspects the classification accuracies increased we consider MP an
important aspect of the music similarity algorithms we have evaluated. However without the
approximation method, MP could not be used in applications.

4.6 Summary
We have presented a possible remedy for the ‘hubness’ problems, which tends to occur when
learning in high-dimensional data spaces. Considerations on the asymmetry of neighbor relations
involving hub objects led us to evaluate a recent local scaling method, and to propose a new
global variant named ‘Mutual Proximity’ (MP). In a comprehensive empirical study we showed
that both scaling methods are able to reduce hubness and improve classification accuracy as
well as other performance indices. Local and global methods perform at about the same level.
Both methods are fully unsupervised and very easy to implement. Our own global scaling
variant, Mutual Proximity, presented in this chapter has the additional advantage of being easy
to approximate for large data sets. Its probabilistic formulation also makes it straightforward to
combine multiple distance spaces.

We showed that MP is ideal to be used for the content-based music similarity measures
examined in this thesis, as they all exhibit very high hubness in their original implementations
and the use of MP led to a significant increase of their retrieval quality. By using the fast,
approximate MP method we also presented a way of how it could be used in large scale music
recommendation systems.
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This chapter presents a filter-and-refine method to speed up content-based music similarity search
in very large music collections. The introduced method achieves speedups of 10–40 times compared
to an exhaustive scan, while at the same time returning 90% to 99% of the true nearest neighbors,
depending on the divergence and parameter settings.

We introduce large scale music similarity search methods in Section 5.2 and present our new
search method in Section 5.3. The filter-and-refine search method is evaluated in Section 5.4
where all introduced music similarity algorithms (ME, EP, PS) are used. The impact on the
retrieval quality using the filter-and-refine method is investigated in Section 5.5.
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Chapter 6 uses the presented method and builds a real prototype large-scale music recommen-
dation service working with 2.3 million tracks. A query request to the system is answered in less
than a second with a nearest neighbor retrieval accuracy of over 90%.

The method was published in 2009 [SFW09] (“A Filter-and-Refine Indexing Method for Fast
Similarity Search in Millions of Music Tracks”) and extended in 2010 [SFW10] (“A fast audio
similarity retrieval method for millions of music tracks”).

5.1 Introduction

Automatic content-based music recommendation systems usually operate with acoustic music
similarity algorithms and work as a query-by-example system: (i) the user selects a song she/he
likes, (ii) the system searches its databases for similar songs, (iii) according to the similarity
measure the k nearest neighbors are returned to the user as possible recommendations. To use
content based music recommendation algorithms on these large databases, the search strategy
usually needs to be adjusted to scale, as a query on millions of songs should be answered quickly.

Content-based music similarity algorithms that represent their features as vectors and use
the Euclidean distance (e.g., Tzanetakis and Cook [TC02] or Neumayer et al.[NLR05]) can use
a wide array of standard techniques for the indexing. General approaches to search use binary
space partitioning (BSP) trees, like Kd-Trees [Ben75] or vantage-point trees [Yia93]. These work
well for moderately high-dimensional features using common metrics. For very high-dimensional
data locality sensitive hashing (LSH, [AI06]) could be used, as the aforementioned algorithms
are likely to perform worse or equal than a linear scan with very high dimensional data in terms
of computational efficiency.

LSH is an approximate nearest neighbor retrieval algorithm for the metric spaces `1 and `2, it
scales sub-linearly in the number of items and comes with a probabilistic guarantee on accuracy.
It is possible to use LSH for non-metric divergences if the features can be embedded in the `1,2
spaces.

However, all content-based music similarity methods we focus on, in this thesis are non-
vectorial (i.e., use multivariate Gaussians) and use non-metric divergence measures (i.e.,
Kullback-Leibler divergences) so that these indexing methods can not be used directly. This
is a major obstacle for systems that want to use any high-quality content-based music similarity
algorithm at a large scale.

This chapter introduces a method to embed the Gaussian features in `2 using a modified
FastMap implementation. Based on the embedding we propose a filter and refine algorithm to
speed up nearest neighbor queries, so that all three content-based music similarity algorithms
we use throughout this thesis (ME, EP, PS, see Chapter 2) can be used in large-scale systems.
Overall the method accelerates the search for similar music pieces by a factor of 10 − 40 and
yields high nearest neighbor recall values of 90 − 99% compared to a standard linear search,
depending on which similarity measure is used.
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5.2 Related Work
Scalable music recommendation systems have been the subject of a number of publications.
One of the first content-based music recommendation system working on large collections (over
200 000 songs) was published by Cano et al. [CKW05] in 2005. They present a music recommen-
dation system relying on a diverse range of audio features including rhythmic as well as timbre
parameters. Together these features form a feature vector. They report artist identification rates
of 24% for their music similarity measure. They do not report on special indexing techniques.

In 2007 Cai et al. [CZZM07] presented a music recommendation system which uses LSH to
scale their acoustic music similarity algorithm. A single song is represented by about 30 high-
dimensional vectors. Those are obtained using techniques from fingerprinting algorithms [BPJ03].
Their music similarity algorithm is evaluated using a ground truth of twenty playlists but is never
compared with other established methods. They report an average query time of 2.5 seconds on
a collection of about 100 000 tracks, which is very high, as the LSH index needs to be searched
multiple times to compute similarity using their method.

Casey and Slaney [CS06] describe a large scale system to scan music collections for possible
copyright infringements. They represent their song features as high dimensional vectors and, like
Cai et al. [CZZM07], use LSH to scale their system. Although their system was not designed for
music recommendation, it clearly shows that LSH can be effectively applied to build large scale
MIR systems if the features and metrics permit.

Roy et al. [RAPB05] were the first to present a music recommendation system which could be
used for large databases using Gaussian timbre features. They use a Monte-Carlo approximation
of the Kullback-Leibler (KL) divergence to measure music similarity. In principle, their method
also resembles a filter-and-refine method similar to the one proposed here. To pre-filter their
results, they steadily increase the sampling rate of the Monte-Carlo approximation. As the
divergence values converge they are able to reduce the number of possible nearest neighbors. In
comparison to the closed form of the KL divergence, which is used in recent music similarity
algorithms, this method is far more expensive to compute and yields worse results [ME07].

Another method to better cope with multivariate Gaussian timbre models was proposed in
a publication by Levy and Sandler [LS06] a year later in 2006. They propose to use Gaussians
with a diagonal covariance matrix, instead of a full one to compute music similarity. They report
a ten-fold speedup compared to the full Kullback Leibler divergence. However, the quality of
this simpler similarity measure is degraded, which can be seen, for example from worse genre
classification rates.

With mufin.com there also exists a first commercial content-based music recommendation
service that computes acoustic audio similarities for personal collections. Their website gives no
information on how their service works1.

Besides these approaches to build large scale music recommendation systems, a number of
general methods from the class of distance-based indexing methods are relevant for indexing
Gaussian features. These methods usually just require a dissimilarity function. A member
of this class are vantage-point (VP) Trees [Yia93], which build a tree structure that can be
searched efficiently, but require a metric distance measure. Another interesting and novel method,
distance-based hashing (DBH), was presented in 2008 by Athitsos et al. [APPK08]. They use

1http://www.mufin.com, visited August 12th, 2011
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FastMap [FL95] to randomly embed arbitrary features in `2 and use LSH to index that mapping.
The idea of using FastMap-related techniques for computationally heavy, non-metric similar-

ity measures and nearest neighbor retrieval was already demonstrated by Athitsos et al. [AASK04]
in 2004 to speed up classification of handwritten digits. In MIR research, FastMap was also used
by Cano et al. [CKGB02] to map the high dimensional music timbre similarity space into a
2-dimensional space for visualization purposes.

Finally, we would like to mention an approach to deal with high dimensional statistical
distance measures pursued by Garcia [GDB08]. He uses modern graphics processors (GPUs)
to compute the divergences, as they offer very high floating-point performance and parallelism.
Garcia shows how a linear brute force nearest neighbor scan can be accelerated on a GPU by a
factor of about 40, compared to a plain C implementation on a standard CPU.

5.3 A Fast Approximative Search Method
To build our filter-and-refine method for fast similarity queries we use an adapted version of
FastMap [FL95], a Multidimensional Scaling (MDS) technique. MDS [CHU+08] is a widely used
method for visualizing high-dimensional data. FastMap takes the distance matrix of a set of
items as input and maps the data to vectors in an arbitrary-dimensional Euclidean space. It was
developed in the mid 1990s and was since then extended in various ways like BoostMap [AASK04]
or MetricMap [WWSZ05]. These extensions were designed to improve the quality of the mapping
of the objects. For our purposes, the original FastMap algorithm produces excellent results.

FastMap is straightforward to use even for large databases since it requires only a fixed
number of rows of the similarity matrix to compute the vector mapping. However, FastMap
requires the distances to adhere to metric properties.

5.3.1 Preliminaries
To evaluate the indexing method we propose, we introduce the evaluation dataset and the quality
measure we will use in the evaluation.

Evaluation Dataset

Throughout this chapter we use a collection of 100 000 songs (30 s center-snippets) to evaluate
the performance of the proposed method. These 100 000 songs are a random subset of a larger 2.3
million songs dataset which will be presented in the next chapter. The full dataset will be used
in the next chapter to demonstrate the performance of our method in a large-scale prototype
system.

Nearest Neighbor Recall

To compare the effectiveness of the nearest neighbor retrieval methods, we use what we call
nearest neighbor (NN) recall. We define it as the ratio of true nearest neighbors found by some
algorithm (NNfound) to the real number of true nearest neighbors (NNtrue) as computed by an
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AC: d(a, xj,1) BC: d(a, xj,2)

AB: d(xj,1, xj,2)

A D B

C

AD: Fj(a)

Figure 5.1: Visualizing Equation 5.2 as a triangle ABC. The lengths of sides AC and BC are
given by the distances of the pivot points x1,2 to the mapped point a, the length of side AB is
the distance between the two pivot points. Thus the distance AD can be computed using Fj(a)
(Equation 5.2).

exhaustive search.
recall = |NNfound ∩NNtrue|

|NNtrue|
(5.1)

The NN-recall can be computed for various sizes of neighborhoods (k). We denote the NN recall
of a size of k nearest neighbors as k-NN recall.

5.3.2 Original FastMap
The original FastMap [FL95] algorithm uses a simple mapping formula (Equation 5.2) to com-
pute a k-dimensional projection of objects into the Euclidean vector space. The dimension k
is arbitrary and can be chosen as required. Usually higher dimensions yield a more accurate
mapping of the original similarity space.

To project objects into a k-dimensional Euclidean vector space, first two pivot objects have to
be selected for each of the k dimensions. The original algorithm uses a simple random heuristic
to select those pivot objects: for each dimension (j = 1..k), (i) choose a random object xr from
the database, (ii) search for the object most distant from xr using the original distance measure
d() and select it as the first pivot object xj,1 for the dimension, (iii) the second pivot object xj,2
is the object most distant to xj,1 in the original space.

After the 2k pivot objects have been selected, the vector representation of an object a is
computed by calculating Fj(x) for each dimension (j = 1..k):

Fj(a) = d(a, xj,1)2 + d(xj,1, xj,2)2 − d(a, xj,2)2

2d(xj,1, xj,2) (5.2)

Figure 5.1 visualizes the computation of Fj(a), which clearly depends on metric properties of d
to produce meaningful mappings. However, it has been noted that FastMap works surprisingly
well also for non-metric divergence measures [AASK04].

Essentially FastMap only requires a distance function d and pivot objects to compute a vector
mapping. Therefore it can be instantly applied to map the Gaussian music similarity models
with their Kullback-Leibler divergences to the Euclidean vectors (ignoring the fact that they are
non-metric divergences).
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Divergence flops flops/flopsME flops/flopsEP flops/flopsPS

ME 3552 1 - -

EP 4 636 - 1 -

PS 35 223 - - 1

d2, k = 20 60 0.017 0.013 0.002

d2, k = 40 120 0.034 0.026 0.003

d2, k = 60 180 0.051 0.039 0.005

Table 5.1: The computational complexity (in floating point operations, flops) of computing the
squared Euclidean distance (d2) is, even for high mapping dimensions like k = 60, much lower
than the cost of a single similarity computation using ME or EP. When PS is used a comparison
is only a 5

1000 th at k = 60.

5.3.3 A Filter & Refine Search Method Using FastMap

To use FastMap to quickly process music recommendation queries, we initially map the Gaussian
timbre models to k-dimensional vectors. In a two step filter-and-refine process we then use those
vectors as a pre-filter: given a query object we first filter the whole collection in the vector
space (with the squared Euclidean distance) to return a number (=filter-size) of possible nearest
neighbors. We then refine the result by computing the exact divergence on the candidate subset
to return the nearest neighbors. By using the exact/original divergence to refine the results,
correct nearest neighbor ranking is ensured. We set the parameter filter-size to a fraction of the
whole collection.

The complexity of a single exact divergence computation is much higher than a simple vec-
tor comparison, so using the squared Euclidean distance to pre-filter the data results in large
speedups compared to a linear scan using the exact divergence. To put that into context to
the examined music similarity algorithm, Table 5.1 compares the computational cost (in float-
ing point operations, flops) of one similarity comparison with ME, EP and PS to the squared
Euclidean distance d2 using different vector dimensions (k). From the table we can clearly see
the computational advantage of using a Euclidean mapping, as a comparison in the vector space
costs only a fraction of computational power compared to any other music similarity function.
The high complexity (in terms of floating point operations) of PS stands out, which comes from
the fact that a matrix inverse needs to be computed in the Jensen-Shannon divergence we use
(Chapter 3, Section 3.4.1.4).

Unfortunately, as the evaluation in Section 5.3.5 will show, applying FastMap to map the
music similarity models without any modifications yields very poor results.
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Divergence % triangle inequality

SKL 90.08%

1− eλSKL, λ = − 1
100 94.27%, used in [Pam06]

1− eλSKL, λ = − 1
50 97.54%, used in [Pam06]

√
SKL 99.32%, used in [SFW09]

log (1 + SKL) 99.99%

JSD 97.87%
√
JSD 100%, used in [ES03]

Table 5.2: Percentage of Gaussian object triples fulfilling the triangle inequality (D(x, z) ≤
D(x, y)+D(y, z)) with and without rescaling. The triangle inequality was checked for all possible
triples in a collection of 10 000 randomly selected Gaussian music similarity models.

5.3.4 Modifications
We propose two modifications to improve the quality of FastMap mappings for approximate
nearest neighbor retrieval. The modifications are centered around two thoughts:

1. A metric divergence measure would produce better vector mappings.

2. A more specialized heuristic for pivot object selection could produce better mappings es-
pecially for the near neighbors, which are at the center of our interest.

5.3.4.1 Rescaling

The symmetrized Kullback-Leibler divergence (denoted with SKL, Chapter 3) as it is used in
the ME and EP algorithm already has the important metric properties of being symmetric and
non-negative. It fails to fulfill the triangle inequality. The Jensen-Shannon Divergence (denoted
with JSD, Chapter 3) is no metric either. The square-root of the JSD is, however, proven to
be a metric distance [ES03]. In this section we test various rescaling methods and try to make
the divergences more metric, i.e., make them obey the triangle inequality.

Table 5.2 shows the rescaling variants which were used to rescale the SKL and JSD. We
experimentally verified the effect of rescaling on a collection of 10 000 randomly drawn Gaussian
song models and checked the triangle inequality for all possible divergence triples. As PS cannot
use the Jensen-Shannon divergence (it is undefined for multivariate Gaussians), we use an ap-
proximation in the experiment (see Chapter 3, Section 3.4.1.3). We denote the Jensen-Shannon
approximation as it is used in the similarity measures with JSD.

For the SKL, the table shows that using log(1 + SKL) to rescale the divergence makes the
divergence obey the triangle inequality in more than 99.9% of the cases. Thus we suggest using
log(1 + SKL) to rescale the SKL for the ME and EP music similarity algorithms.
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For the Jensen-Shannon-like divergence as it is used in the PS music similarity algorithm√
JSD is clearly the best rescaling variant. In 100% of all triples tested the triangle inequality

was fulfilled.

5.3.4.2 Pivot Object Selection

To select the pivot objects needed to map an object x to a vector space, the original algorithm
uses two objects for each dimension which lie as far away from each other as possible (see
Section 5.3.2). In contrast to the original heuristic we propose to select the pivot objects using
an adapted strategy:

1. First we randomly select an object xr and compute the distance to all other objects.

2. We then select the first pivot object x1 to be the object lying at the distance median, i.e.
the object at the index i = bN/2c on the sorted list of divergences.

3. Likewise, the second pivot object x2 is selected to be the object with the distance median
of all divergences from x1 to all other objects.

By using pivot objects at the median distance we avoid using objects with extremely high
divergence values which often occur in the divergence tails when using any Kullback-Leibler di-
vergence. Additionally, as we are particularly interested in optimally mapping the near neighbors
and not the whole divergence space, this strategy also helps preserving the neighborhoods in the
mapping method.

5.3.5 Evaluation of the Modifications
In a first experiment we measure the impact of each proposed modification on the filter-and-
refine method. To do that, we compute the nearest neighbor (NN) recall on the collection of
100 000 songs using standard ME similarity models. We use the symmetrized Kullback-Leibler
divergence (SKL) as well as the Jensen-Shannon-like divergence (JSD). Based on the results of
the experiment, we select the modifications yielding the best results to be used in our algorithm.
The experiment is set up as follows:

We use k = 40 as the mapping dimension for mapping the Gaussians into the vector space.
In the mapping step the different divergence rescaling variants are applied. In addition to the
rescaling of divergences, we also test with (i) the original FastMap pivot object strategy and (ii)
our median-object selection strategy to compute the mapping. We use a fixed filter-size of 10%
(= 10 000 objects) in the refine step of the search for this experiment. All unique experiment
configurations are rerun ten times, the results are averaged.

Figure 5.2a shows the result of the experiment for the SKL. A huge improvement in the
nearest neighbor recall can be seen for all strategies which use the median pivot object selection
heuristic (B, C, D, E) compared to the original FastMap heuristic (A). The figure also shows that
rescaling the SKL values helps to further increase the NN recall. The suggested pivot object
selection strategy together with log-rescaling gives the best results: over 99% of the 10, and over
93% of the 500 nearest neighbors can be found using this filter-and-refine configuration, while
computing only 10% of the SKL divergences that a linear scan would require.
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Figure 5.2: Nearest neighbor recall of two pivot object selection methods (median: the proposed
pivot object selection heuristic, basic: the original Fastmap heuristic) in combination with four
divergence rescaling methods (no-rescaling, eλx,

√
x, log(1 +x)) evaluated for the raw SKL and

JSD divergences. NN recall is averaged over ten independent evaluation runs (10 000 random
queries per run). Parameters: k = 40, filter-size = 10%, collection size= 100 000.
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Figure 5.2b shows the result of the experiment for the JSD. Again using the median pivot-
point selection heuristic (B, C ) leads to a significant better mapping of the true nearest neighbors,
measured by the NN-recall. The suggested pivot object selection strategy together with

√
x-

rescaling gives the best results for the JSD: over 99% of the 10, and over 90% of the 500 nearest
neighbors can be found found using this filter-and-refine configuration, while computing only
10% of the JSD divergences that a linear scan would require.

5.4 Evaluation with Music Similarity Algorithms
The experiments in the previous section have shown that the filter-and-refine process we propose
is able to return the nearest neighbors very accurately while computing the exact divergence in
the refine step for only a fraction of the full collection. However, in a system using this approach
there are two free parameters which need to be chosen: (i) the mapping dimension (k), and (ii)
the filter-size. Both have a direct impact on the nearest neighbor recall and computing power
needed to process a query.

It is obvious that a larger filter-size results in better NN recall values but higher computational
costs. Likewise, a higher k used for the vector mapping results in a more accurate mapping of
the divergence space, but with each dimension the computational costs to compute the squared
Euclidean distance in the pre-filter steps are increased.

The next sections discusses each of the computer music similarity measures (ME, EP, PS)
and evaluates their nearest neighbor recall under different parameter settings. These evaluations
show how the method performs on the actual music similarity measures in terms of computational
complexity and nearest neighbor recall. Based on the evaluations a system implementing the
method should select its parameters.

We discuss ME as a system using a single divergence (Section 5.4.1), EP as a similarity
measure using a linear combination of multiple measures (Section 5.4.2) and PS as a system
using Mutual Proximity (Section 5.4.3) to enhance its performance.

5.4.1 Single Divergence Measure
The ME music similarity algorithm can be used with the proposed filter-and-refine method
without any further changes, as it only uses a single divergence measure. Figure 5.3 evaluates
the filter-and-refine method with ME using different parameter combinations of k and filter-size.
The original algorithm using SKL as similarity function is used. The same experiment could of
course be performed using the JSD as divergence measure; in that case the speedups compared
to a linear scan would be even greater as the computational complexity of the divergence is far
greater.

The first plot (Figure 5.3a) shows the fraction of floating point operations needed to answer a
query compared to a full scan. The plot also shows how the 10-NN recall develops with changing
filter-size and k. From this plot we can see that in comparison to a full scan only 8.5% of flops
are required to find 95% of the 10 nearest neighbors with a filter-size of 5% and k = 40. Looking
at Figure 5.3b we observe that this configuration would still return over 90% of the true 100
nearest neighbors that a linear scan would return. This configuration would result in an 11×
speedup compared to a linear scan.
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Figure 5.3: Evaluation of different parameters settings for the original ME algorithm. All results
are averaged over ten runs. (a) shows the computational complexity under various settings, (b)
shows the development of the nearest neighbor recall.
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If a 10-NN recall of 81% is acceptable a parameter combination requiring only 3.3% the
computational cost of a linear scan is possible (k = 20 and filter-size = 2%), yielding a 30×
speedup). Almost perfect 10-NN recall values (> 99%) can be reached when setting filter-size
to about 10% of the collection size, which still requires only 10% of the time a linear scan would
need (10× speedup).

5.4.2 Linear Combinations
In this section we want to show the applicability of the previously proposed method to the EP
music similarity measure. EP linearly combines multiple measures (music timbre and rhythm)
in a single music similarity function. The music timbre component is the same as in ME (with
the SKL as similarity function), and the rhythm component uses the Fluctuation Patterns (see
Chapter 2, Section 2.4.3 for a more detailed discussion of the similarity measure). The similarities
of the rhythm components are computed using a standard Euclidean distance.

In the case of EP we refrain from using the log-rescaling as the original similarity measure
already rescales the divergence with eλ. When using the log rescaling with the SKL, the static
normalization parameters of this similarity measure would need to be recomputed.

The proposed filter-and-refine method can be applied to the combined similarity measure EP
without any modifications, as the triangle inequality (d(x, z) ≤ d(x, y) + d(y, z)) also holds for
any linear combination of two metric distance measures d1 and d2:

α1d1(x, z) + α2d2(x, z) ≤ α1(d1(x, y) + d1(y, z))
+ α2(d2(x, y) + d2(y, z)).

(5.3)

Therefore a linear combination of a non-metric (e.g., the SKL) and a metric distance (e.g., the
Euclidean distance) could only violate the triangle inequality where the non-metric measure does.
Since we have experimentally shown that rescaling the SKL can make the divergence almost
metric, the linear combination inherits this property and should deliver comparable results with
FastMap.

Figure 5.4 shows the same evaluation for the EP similarity measure as we have done for the
single divergence measure in Section 5.4.1. The results are similar to the evaluation with ME.
With only 7.5% of the computational complexity (k = 40, filter-size= 5%) over 91% of the true
10 nearest neighbors can be retrieved. From Figure 5.4b we see that this configuration retrieves
96% of the true first nearest neighbor and over 86% of the true 100 nearest neighbors. This
configuration speeds up search 13× compared to a full exhaustive scan.2

5.4.3 Mutual Proximity
Similarly to EP, the PS music similarity measure also uses a linear combination of multiple
similarity measures, however the PS similarity values can not be used in the filter-and-refine
method in a meaningful way. PS uses Mutual Proximity (Chapter 4) to combine the individual
similarities. As Mutual Proximity yields probabilities, all metric properties of a divergence

2Note that we achieved higher nearest neighbor recall when using log-rescaling of the SKL. However, this
requires changing the original EP similarity measure to adopt the global normalization factors.
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Figure 5.4: Evaluation of different parameters settings for the original EP algorithm. All results
are averaged over ten runs. (a) shows the computational complexity under various settings, (b)
shows the development of the nearest neighbor recall.
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(a) PS 10-NN recall for k = 10−80, filter-size= 1−10% and their computational complexity compared
to a full scan.
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Figure 5.5: Evaluation of different parameters settings for the original PS algorithm using Mutual
Proximity. All results are averaged over ten runs. (a) shows the computational complexity under
various settings, (b) shows the development of the nearest neighbor recall.
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measure are destroyed. Using the similarities returned by MP to create the mapping vectors
with Fastmap would not yield usable results, i.e., very low nearest neighbor recall values.

To nevertheless use a similarity measure with Mutual Proximity and the filter-and-refine
method, we propose to use the original divergence of the similarity measure to create the vector
mapping for the filter step. Only the refine step would use the divergence together with Mutual
Proximity. In the case of ME that would mean using the (rescaled) JSD or SKL to compute
the vector mappings, and using MP during the refine phase. That way a good vector mapping
could still be computed from the distances, while the quality of the refined results still benefit
from using Mutual Proximity.

In the case of PS, where there is no original similarity measure, we propose using a unit-
variance normalization, instead of MP to linearly combine the rhythm (dr) and timbre (dt)
similarity measure. Thus the PS music similarity measure used to compute the vector mapping
would be defined as:

dF&R
PS (m1,m1) = 0.5 dr(m1,m2)

σr
+ 0.5 dt(m1,m2)

σt
, (5.4)

In the refine step the standard PS similarity measure is be used. To compute the global
normalizers σt,r we simply average the standard deviation of distances σi computed for each
song to use MP:

σr = 1
n

n∑
i

σri , σt = 1
n

n∑
i

σti (5.5)

Of course the approximate variant of MP (MPapprox as described in Chapter 4, Sec-
tion 4.3.2.2) would need to be used for large collections. Computing the full similarity matrix to
estimate the MP parameters is not feasible in a large scale scenario.

Figure 5.5 evaluates PS with Mutual Proximity. The results are similar to the previous
evaluations, although the speedup factor is even higher due to the higher complexity of the
original divergence. The steeper curves in the plots (compared to ME and EP) come from the
fact that even a high number of mapping dimensions (k) does not add much computational
complexity relative to the complexity of the full PS similarity.

From Figure 5.5a it can be seen that with only 5.4% of the computational complexity (k = 40,
filter-size= 5%) 90% of the true 10 nearest neighbors can be retrieved. From Figure 5.4b we
see that this configuration retrieves 96% of the true first nearest neighbor and over over 82%
of the true 100 nearest neighbors. This configuration speeds up search 18× compared to a full
exhaustive scan. If a NN-recall of 90% for the first nearest neighbor and 80% for the 10 nearest
neighbors is acceptable (at k = 40 and filter-size= 2%) a speedup of 43× can be achieved.

5.5 Retrieval Quality
An aspect of the filter-and-refine method which was not yet evaluated, is how falsely reported
nearest neighbors (false positives) affect the quality of the music recommendations. Missing a
nearest neighbor does not necessarily need to lead to worse retrieval quality.

To try to quantify the effect on the retrieval quality, we conduct a genre classification ex-
periment with the filter-and-refine method. We evaluate all eight music collections which we
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use throughout this thesis (cf. Chapter 2, Section 2.5.1), again with all three music similarity
algorithms (ME, EP, PS), in a genre classification experiment. As in previous experiments we
use four different neighborhood sizes Ck=1,5,10,20 in the experiment. The filter-and-refine method
uses a mapping dimension of k = 40, and a filter-size of 5%.

Table 5.3 summarizes the results. For Ck=1 the increases and decreases in genre classification
rates balance each other. For larger Ck>1 the classification rates increase notably with the filter-
and-refine technique in cases where no artist filter is used. However, if an artist filter is used,
slight decreases of classification accuracies can be observed. The maximum decrease in a larger
collection with more than 1 000 songs is 1.3 percentage points (LMDB collection at Ck=10). As
the method also seems to work quite well for small collections, it could be an indication that
small devices with limited computational power could also use the method to generate playlists.
The results also suggest that the false positives (in terms of their nearest neighbor position) do
not seem to adversely affect the classification accuracies.

5.6 Summary
We have presented a filter-and-refine method for fast music similarity search in large collec-
tions. The method is primarily designed and evaluated for music similarity algorithms which
use Kullback-Leibler divergences with multivariate Gaussian features to compute acoustic simi-
larity. It works by first mapping the Gaussian similarity features into an intermediate Euclidean
vector space using a modified FastMap algorithm. To increase the quality of this vector map-
ping, the divergences are rescaled and a median pivot object selection heuristic is used within
the FastMap algorithm. We use this vector-space approximation to quickly filter for possible
nearest neighbors. In a second (refine) step the results are reordered according to their original
divergence.

As a search in the vector space has low computational complexity compared to the Kullback-
Leibler divergences, the two-tiered search is shown to be very effective. The introduced method
achieves speedups of 10–40 times compared to an exhaustive scan, while at the same time re-
turning 90% to 99% of the true nearest neighbors, depending on the divergence and parameter
settings. By accelerating similarity queries we show how a large scale music recommendation
service using recent music similarity algorithms could be operated.
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Filter & Refine Ck Difference to Exact Ck
Collection Algorithm AF 1 5 10 20 1 5 10 20
ISMIR 2004 (Train) ME no 79.2% 71.7% 67.6% 63.1% -1.2 3.8 7.0 6.0

EP no 80.6% 72.9% 68.2% 62.9% -0.7 2.8 3.7 2.7
PS no 86.8% 78.2% 73.9% 68.3% 0.7 4.7 2.8 5.0
ME yes 63.7% 62.8% 60.7% 58.2% -0.5 0.9 0.5 0.4
EP yes 68.7% 66.0% 62.9% 60.1% -0.3 -0.2 -0.3 -0.7
PS yes 72.4% 68.9% 65.7% 63.4% -0.1 -0.1 -0.5 -0.1

ISMIR 2004 (Full) ME no 85.2% 78.7% 75.1% 70.2% 0.2 3.1 6.2 7.9
EP no 84.5% 78.7% 74.8% 70.1% 0.3 3.0 3.2 5.5
PS no 90.5% 84.4% 80.7% 76.5% 1.1 5.3 4.2 4.7

GTzan ME no 74.7% 61.7% 54.8% 46.7% 0.9 7.6 6.4 11.4
EP no 75.1% 63.9% 56.6% 48.1% 1.4 8.8 8.0 8.5
PS no 80.3% 71.6% 65.3% 56.9% 0.2 7.4 11.2 10.8

Homburg ME no 43.9% 41.2% 39.9% 38.6% 0.1 1.4 3.6 2.0
EP no 45.8% 43.4% 41.6% 40.0% 1.4 -0.2 2.2 1.3
PS no 48.0% 46.1% 44.6% 41.9% -0.6 0.0 0.3 -0.0
ME yes 41.7% 40.4% 39.4% 38.3% -0.1 -0.3 0.1 0.2
EP yes 44.5% 42.8% 41.2% 39.7% 1.2 0.1 -0.4 -0.5
PS yes 47.9% 46.6% 45.3% 44.7% 0.4 -0.2 -0.2 0.1

1517 Artists ME no 42.8% 31.1% 25.9% 21.5% 0.9 6.7 6.1 5.9
EP no 41.7% 30.7% 26.1% 21.9% -0.3 5.2 4.2 4.3
PS no 50.8% 39.4% 33.8% 28.3% 1.0 5.9 6.0 5.6
ME yes 22.7% 19.9% 18.7% 17.2% 0.6 0.2 0.2 0.2
EP yes 24.8% 21.7% 20.2% 18.4% -0.1 -0.2 -0.5 -0.7
PS yes 31.1% 27.7% 25.7% 23.4% -0.1 -0.7 -1.0 -1.5

Ballroom Dataset ME no 53.3% 45.0% 42.0% 38.3% -1.0 2.9 5.6 6.8
EP no 67.6% 56.4% 51.2% 43.4% -0.3 1.2 1.6 2.1
PS no 89.4% 83.1% 79.2% 72.6% 1.4 4.2 6.0 14.3

Cretan Dances ME no 25.8% 23.2% 21.4% 21.1% -0.3 4.3 0.8 -1.1
EP no 34.9% 25.0% 21.9% 20.3% 3.2 -3.3 5.8 3.1
PS no 37.4% 31.4% 26.2% 18.9% 6.9 5.1 -1.8 -4.0

LMDB ME no 92.9% 88.4% 84.4% 77.1% 0.5 3.9 7.8 11.7
EP no 92.4% 86.8% 82.4% 76.1% 1.5 6.8 9.3 9.8
PS no 95.0% 90.8% 87.4% 82.5% -0.9 1.0 3.0 4.7
ME yes 64.2% 56.4% 55.4% 53.8% -1.0 -1.0 -1.3 -0.1
EP yes 67.3% 63.6% 61.1% 58.0% -0.9 -0.9 -0.8 -0.3
PS yes 81.9% 77.8% 75.1% 70.8% -0.2 -0.1 -0.3 -0.8

Popular Rhythms ME no 33.4% 26.6% 22.6% 18.9% -1.8 7.3 3.9 9.7
EP no 40.8% 30.3% 23.9% 17.4% -0.1 2.6 3.2 -1.0
PS no 72.6% 55.7% 45.8% 33.9% -0.6 5.8 7.8 10.6

Table 5.3: Results of a genre classification experiment on all eight datasets. The classification
accuracies Ck=1,5,10,20 for three music similarity algorithms (ME, EP, PS, where applicable with
Artist Filter) and a system using the approximate filter-and-refine system are compared to their
original (exact) classification accuracies.
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This chapter builds a prototype large-scale music recommendation service working with 2.3 million
tracks. While we admit that 2.3 million tracks is not quite all the music of the world, the
evaluation of the system is the largest published to date. The system requires all methods which
have been introduced in this thesis. A query request to the music recommendation prototype is
answered in less than a second with a nearest neighbor retrieval accuracy of over 90%. Section 6.2
describes the evaluation collection we use, and Section 6.3 builds, evaluates and presents a high-
performance and high-quality music recommendation engine using all the methods presented in
this thesis.

6.1 Introduction
Chapter 2 identified the problems related to building a large scale music recommendation system
using any of the three content-based music similarity measures used in this thesis. Chapter 3,

109
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Genres per Album 1 2 3 4 5 6 7 8
Albums 70 182 52 803 38 761 18 782 4 986 870 162 18
% of Collection 37.6% 28.3% 20.8% 10.1% 0.3% 0.5% 0.1% 0.01%

Table 6.1: Number of music genre names assigned per album. The majority of albums is assigned
1–3 genres.

4 and 5 subsequently presented solutions to each of the problems. We showed how to use the
music similarity features natively and correctly in clustering algorithms, developed a method
to alleviate the hub problem and created an indexing solution for the reviewed class of music
similarity algorithms.

Now everything is in place to build a truly scalable music recommendation system. The
prototype system we will develop alongside with the data we use for evaluation, is described in
the next sections of this final chapter.

6.2 2.3 Million Songs

To build the prototype system we use real music data. The data is downloaded from an on-line
MP3 store, which offers free 30 second snippets of songs for preview purposes. In total 2.3 million
song-snippets (2 314 925) were downloaded over the course of three months. These songs are from
186 564 different albums from 96 397 different artists. In addition to the MP3s we also gathered
their CD cover-art and parsed the meta data from the download web page. Meta data which
we parsed includes: The artist/band name, the song title, the song number, release year, broad
music genre tags and the publishing company.

Each album is assigned to one or more music genres, which enables us to perform a large
scale genre-evaluation experiment. In total there are 21 different music genres in the collection.
The distribution of the genres in the collection is shown in Figure 6.1. Almost two thirds of
the albums are assigned to the genre pop or rock. When building the collection we noticed that
the genre labels of the MP3 store seem to be selected to boost sales rather than by musical
considerations. For example popular music albums would often also be labeled with multiple
other genre names to ensure users will notice the album regardless of the category they click on
in the shop. To get an impression of the music genre distribution, Table 6.1 lists the number of
albums and the number of genres they are assigned to.

An interesting fact can be uncovered when looking at the number of songs per album in the
collection. Figure 6.2 displays a histogram of the number of songs per album. The distribution
seems quite Gaussian, with a clear peak at 10 and 12 tracks per album. However, a notable
valley at 11 tracks per album is visible – a number which apparently some artists like to avoid
on their album.
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Albums

Genre Albums %
Pop 55 013 29.5% Classic Rock 12 013 6.4%
Rock 50 696 27.2% Miscellaneous 11 902 6.4%
International 48 213 25.8% Broadway & Vocalists 9 578 5.1%
Alternative Rock 36 743 19.7% Latin Music 8 592 4.6%
Jazz 25 465 13.6% Children’s Music 8 434 4.5%
Dance & DJ 19 696 10.6% R&B 6 813 3.7%
Folk 18 862 10.1% New Age 5 551 3.0%
Christian & Gospel 18 791 10.1% Country 5 383 2.9%
Hard Rock & Metal 16 258 8.7% Opera & Vocal 5 106 2.7%
Classical 16 214 8.7% Rap & Hip-Hop 3 803 2.0%
Blues 15 461 8.3%

Total 398 587 213.7%

Figure 6.1: Histogram plot of the music genres of the albums in the 2.3 million tracks collection.
As multiple genres can be assigned to an album the totals sum up to more than 100% of the
collection.
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Figure 6.2: A histogram plot of the number of tracks per album.

6.3 The Prototype System: Wolperdinger
To build the prototype system we first select the music similarity algorithm to use, choose the
parameters for the filter-and-refine method to achieve best retrieval results and evaluate the
configuration according to the measures we have used throughout this thesis. After that we
show how we implemented the prototype system, report query performance and show the web-
based interface we built to allow easy browsing of the 2.3 million tracks with the “Wolperdinger”
music discovery engine.1

6.3.1 Music Similarity Features
Throughout this thesis we have used three related content-based music similarity algorithms to
demonstrate the methods we have developed: ME, EP and PS (see Chapter 2 for their review).
For the prototype system we decide to use PS. It is currently one of the music similarity algorithms
with the best qualitative results. Unfortunately it is also the most expensive one to compute,
also in terms of feature extraction (see Section 2.4.4). In our prototype we use a modified feature
extraction variant to speed up the analysis of songs. The changes are rather small, but have a
big impact on the processing time:

• Instead of computing four different psychoacoustic spectra during the feature extraction
(and thus requiring four STFTs), we compute a single STFT and compute only the Mel
and a logarithmic Cent spectrum from it.

• We round all window sizes to the closest power of two. Especially when computing the
FFT for the rhythm/onset coefficients this change reduces the runtime considerably as no
corner-case FFT algorithms need to be used.

1A “Wolperdinger” is a horned rabbit, it can be (very rarely) seen in Munich in Bavaria during the Oktoberfest.
The author shamelessly used the name for his music recommendation prototype system, after spotting one on
the Oktoberfest in 2009. More information about Wolperdingers: http://en.wikipedia.org/wiki/Wolperdinger,
visited August 12th, 2011
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With these changes we are able to process 810 MP3 snippets per minute on a quad-core desktop
system. The runtime includes the decoding and resampling of the sounds, which is usually
required in any audio processing algorithm.

6.3.2 Music Similarity Search
The PS similarity function (computing two Jensen-Shannon-like divergences) is very expensive
to compute. We have seen in Chapter 5 that ten times more floating point operations (35 223)
are required to compute a single similarity compared to the simple ME measure, which requires
only 3 552flops per comparison. Additionally PS requires the dynamic Mutual Proximity nor-
malization technique to linearly combine its two rhythm and timbre similarity measures.

However with the filter-and-refine method presented in Chapter 5 we have shown a way to
use the complex similarity functions while still retrieving a very high percentage of true nearest
neighbors. In Chapter 4 we have also presented an approximative method to compute the Mutual
Proximity normalization factors requiring a coarse k-means clustering. In Chapter 3 we showed
how a k-means clustering can be done for the Gaussian music similarity features. All of that
enables us to finally use the PS algorithm with very large collections.

6.3.2.1 Parameters

To use the filter-and-refine search algorithm two parameters need to be determined: the mapping
dimension of the vectors (k) for the approximate filter step and the number of objects (filter-size)
to search in the refine step of the method. Both parameters have a direct impact on the retrieval
quality and the speed of the system.

In an experiment we evaluate how the approximate search method performs on the 2.3 million
songs collection using different parameter configurations. This experiment is the basis to choose
the optimum set of parameters for the recommendation system. To perform the experiment we
randomly select 23 000 songs from the 2.3 million song snippets, compute their exact 1–500 near-
est neighbors in the whole collection (of 2.3 million songs) and use the filter-and refine methods
with different parameter settings to measure the impact on the retrieval quality, comparing it to
an exact search. A larger part of the collection could not be tested as a single computation of an
exact playlist takes about 19 s to complete. In the experiment we compute the nearest neighbor
(NN) recall, measuring the percentage of true nearest neighbors compared to the exact solution
(see Chapter 5 for a definition)

Figure 6.3 shows the result. As the exact nearest neighbors need to be determined to compute
the NN recall values using a linear scan, the experiment took five days to complete. The first
plot (Figure 6.3a) sets the computational complexity of a linear scan in relation to the mapping
dimensions k = 5, 10, 20, 40, filter-size= 0.5%, 1%, 2%, 5% and the resulting nearest neighbor
recall. From the plot we can see that a smaller filter-size should be used to decrease the search
time, rather than decreasing the number of mapping dimensions.

A mapping dimension of k = 5 and a filter size of 5% only returns 65% of the true nearest
neighbors, while using a mapping dimension of k = 40 and a filter-size of 2% is twice as fast and
still has a NN recall of 90%.

The second plot (Figure 6.3b) uses a fixed mapping dimension of k = 40 and looks at the
impact on the {1,10,100,200,500}-NN-recall values. Using these two plots it is now easily possible
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Figure 6.3: Evaluation of different parameters settings for the PS algorithm on the 2.3 million
song snippets. From the 2.3 million songs 23 000 have been randomly selected for this evaluation.
(a) shows the computational complexity under various settings, (b) shows the development of
the nearest neighbor recall.
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Evaluation Overlap Match
k = 1 k = 10 k = 1 k = 10

Artist Filter 51.2% 46.7% 70.0% 67.0%
Album Filter 57.2% 49.3% 74.1% 69.0%
Standard 69.0% 55.0% 81.1% 72.2%
Random 15.9% 15.9% 28.1% 28.1%

Table 6.2: Genre retrieval accuracy evaluated for the 2.3 million songs collection.

to choose the optimal operating parameters for the filter-and-refine routine in the system. Based
on that we use a static k = 40 and a filter-size of 1-2% for the system. That would result in
a speedup of 80-40× compared to a linear scan, while still returning a 85-90% of true nearest
neighbors.

A dynamic server solution could use a static k = 40 vector mapping dimension to pre-filter
the results and vary the filter-size parameter according to the current load of the server, or the
priority of the query. Implementing that strategy would make the system capable of answering
queries with constant speed, at the cost of decreased accuracy under high load.

6.3.3 Qualitative Evaluation
After fixing the parameters, we perform a qualitative evaluation of the recommendation system.
As we have (very coarse) genre labels available for all songs, we first evaluate the genre retrieval
accuracy the system achieves for the whole collection. As there are multiple genres attached to
each album (and thus to each song) we can compute two different measures:

The first measure (denoted as Match) counts the number of songs in the nearest neighbors
which have at least one genre matching with the query song q, the second measure (denoted as
Overlap) computes the relative overlap of the genres compared to the number of genres of query
q. [P ] in Equation 6.1 denotes the Iversion bracket, which is 1 if P is true, and 0 otherwise:

Match(q) = 1
k

k∑
i=1

([|Genres(q) ∩ Genres(NNi)| > 0], (6.1)

Overlap(q) = 1
k

k∑
i=1

|Genres(q) ∩ Genres(NNi)|
|Genres(q)| . (6.2)

We average both retrieval accuracy numbers over all songs and compare them to a random shuffle
algorithm. The results for all 2.3 million songs using the full Wolperdinger system are shown in
Table 6.2. The table also includes retrieval accuracy values using an artist as well as an album
filter. Looking at the results we can see that both measures clearly outperform a random shuffle
system. Overlap returns 69–46.7% genre retrieval overlap where a random shuffle system would
return 15.9%. In the case of the Match measure, the results are similar: The system achieves
81.1–67% genre retrieval accuracy compared to 28.1% genre retrieval accuracy for the random
system.
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Figure 6.4: Reachability of all songs in the n nearest neighbors in the Wolperdinger prototype
recommendation system compared to a random one.

Another qualitative measure we evaluate is the “reachability” of other songs in the nearest
neighbors. Reachability measures the percentage of songs which occur in the nearest neighbor
lists of at least one other song, i.e., the number of songs that can be reached/discovered by
only looking at the nearest neighbor lists at a given k. The measure is closely related to hub-
ness. A recommendation system exhibiting high hubness would have poor reachability. A good
recommendation system would be desired to exhibit high reachability as well as high retrieval
quality.

Figure 6.4 shows the reachability for increasing nearest neighborhood sizes. Again we compare
it to the reachability of a random shuffle recommender system, which gives a possible upper limit.
Our recommendation system, while returning qualitatively good results, can discover 90% of the
2.3 million songs even with a small neighborhood size of 10. At a neighborhood size of 100 all 2.3
million songs are reachable in the neighborhood graphs. The random variant reaches all songs
in its recommendations at a neighborhood size of 5–6.

6.3.4 Implementation and Server Specification
The implementation of the actual recommendation system is now straightforward. In an initial
step all music pieces are analyzed and their similarity models are computed. All similarity models
are stored in a database. A single PS music similarity model is about 5 kilobytes. So all models
of the 2.3 million song snippets (1 terabyte MP3s) require about 11 gigabytes of storage.

After the collection has been analyzed, two additional preprocessing steps are required before
the system can answer queries:

• PS uses Mutual Proximity to linearly combine the rhythm and timbre component. To use
Mutual Proximity, we estimate its parameters using a k-means clustering of the Gaussians
and the approximative MP algorithm we introduced in this thesis. We use 5 centers for
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Figure 6.5: Comparison of the time it takes to query the 2.3 million song collection for nearest
neighbors using a full scan compared to a scan using the proposed filter-and-refine method. A
quad core CPU (2.5GHz) was used and all Gaussian similarity models were loaded to RAM.

the k-means clustering.

• Each song of the collection needs to be mapped to the vector space to use the filter-and-
refine method. We use a mapping dimension of k = 40. To speedup the pivot object search
we randomly sample 10% of the whole collection.

To allow a quick restarting of the system, we save to disk (i) the pivot objects for each
dimension together with the vector mappings and (ii) the k-means centers together with each
object’s distance to the centers, and hold these in memory after the server was started. This
allows fast restarting of the system and quick processing of new objects.

To query for similar objects we use the previously described filter-and-refine method, filtering
out a predefined number (filter-size, a percentage of the collection size) of nearest neighbor
candidates using the vector representation and refining the result with the exact PS similarity
measure.

6.3.5 Performance
As high performance is a key objective, we finally measure the actual query response times of
the system. The Wolperdinger server system is implemented in C++ and requires all similarity
models to be loaded to RAM. In the case of the 2.3 million tracks 12 gigabytes of RAM are
required to hold all music features in memory. To run the system we use a desktop PC with a
quad core CPU (with 2.5 Ghz per core).

Figure 6.5 compares the query response times of four different filter-size settings (filter-
size= 10%, 5%, 2%, 1%, k = 40) to a full linear scan using the PS music similarity measure on
the 2.3 million songs collection. From that plot we can see that the final system is capable
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of answering music recommendation queries in 0.68 s on a 2.3 million songs collection while
returning about 90% of the correct nearest neighbors (Figure 6.3) compared to a linear scan,
which takes 19.6 s on the same system. 92% 10-NN recall can be reached with 1.3 s queries and
a filter-size of 5%. If 85%/75% 1/10-NN recall is acceptable, queries can be answered in 0.39 s.

At the point where a filter-size of 1% is used, the time to find and sort the vectors in the filter
step is for the first time bigger (0.25 s) than the exact search step (0.14 s). Even faster query
responses can be achieved if standard vector indexing techniques like kd-trees or locality-sensitive
hashing are used to quickly search the vector space for candidates, thus reducing the time in the
filter step.

6.3.6 User Interface
We finally use the server component which we developed to build a simple music recommendation
web application on top of it. We integrate two functionalities on top of the recommendation
system:

• a music and album recommendation service

• and an automatic radio station service.

The web application starts by displaying a text field which is used to search for music. A query
searches for matching artists and album titles. Figure 6.6 shows a screenshot of the application
using “blues” as a query. The search results are displayed in the bottom row as album covers in
a cover flow-like arrangement. The mouse scroll wheel can be used to scroll through the covers.
Music from the foremost album starts playing immediately.

When the button “Explore Album” is pressed, the music discovery screen loads. In our case
we clicked on the album “Easy Blues” by Lafayette Leake. The screen shows all tracks from the
album, a click on a song starts playing the selected track. If a song seems interesting to a user,
the buttons “Album” (to use the album as seed) or “Playing Song” (to use the selected song as
seed) can be used to discover more music using the recommendation engine.

Figure 6.7 shows a picture of the screen which is displayed if the user clicked on the “Playing
Song” button. The explore screen shows eleven automatically recommended music pieces from
different albums plus the initial album. By hovering over the album covers the recommended
song from the albums is highlighted and can be played. A click on “Album” discovers similar
albums, instead of individual songs. Any time a song is playing the user can click a button on
the interface and use the currently playing song to dig deeper into the 2.3 million songs.

Figure 6.8 shows a screenshot the second functionality we integrated into the web application
using the Wolperdinger service. When the “Radio” button is pressed on the explore screen the
playing song is used to create a continuous radio station. The radio station uses the Wolperdinger
server to select the songs on its playlist and tries to keep on playing music from the same style.

These functionalities show how easy high-performance content-based music recommendation
could be integrated into a web-store for recommendations or used as a last.fm like radio station
service.
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Figure 6.6: Screenshot of the Wolperdinger prototype music discovery. The search results are
displayed in a cover flow like list in a standard web-browser.
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Figure 6.7: Screenshot of the Wolperdinger exploration screen. Twelve blues songs are recom-
mended for a query song by Lafayette Leake.
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Figure 6.8: Screenshot of the Wolperdinger radio mode. A blues radio station was initialized.
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6.4 Summary
This chapter integrated all methods presented in this thesis to finally build a music recommen-
dation prototype engine working with 2.3 million songs. The proof-of-concept system is able to
answer recommendation queries in less than one second, while still retrieving 90% of the true
nearest neighbors using one of the currently top-rated music similarity measures. Finally we also
presented a web application built on top of the recommendation service to demonstrate how the
system could be used in commercial applications.



Chapter 7

Conclusions

This thesis identified three major problems prohibiting the use of state-of-the art music similarity
measures in large scale recommendation systems: (i) the non-vectorial music similarity models
and their non-metric similarity functions, (ii) the hub problem of the music similarity measures,
and (iii) the lack of an employable indexing solution for fast similarity search. Solutions for these
major problems defined the core of this thesis.

First the thesis showed the basics needed to understand how to properly use the multivari-
ate Gaussian models and the divergences associated with this representation. We specifically
show how the music similarity models can be natively and correctly used in standard centroid-
computing algorithms, like the k-means algorithm. All previous works in music information
retrieval avoided this step and artificially vectorized the features to use them in standard algo-
rithms. Using these basic concepts, we developed a generalized self-organizing map algorithm
which is able to natively cluster multivariate Gaussians. We showed that using the native fea-
tures instead of a vector approximation yields higher quality maps with much less computational
cost. We also published a toolbox which implements all methods introduced in this chapter and
is freely available on the web.

In the second part we explored the problem of hubs and their impact on the covered class
of music similarity algorithms. Hubs are objects which unwontedly keep appearing as nearest
neighbors of a large part of objects. We showed that the problem of hubs is a general problem in
machine learning and presented a method alleviating the problem. The method is called Mutual
Proximity and works by symmetrizing nearest neighbor relations in a probabilistic framework.
By using Mutual Proximity with a large number of standard machine learning databases we
showed that the number of hubs is greatly reduced. At the same time we could show that
measures like the classification accuracy of collections with previously high hubness increased.

In the third part we presented a filter-and-refine method for fast music similarity search. The
method was specifically designed and evaluated for the music similarity algorithms which were
presented in this thesis. The method modified the Fastmap algorithm so it can be efficiently
used to map the features into the Euclidean vector-space which can be searched very fast in
contrast to the original divergences. The method works by first searching the vector-space for
possible nearest neighbors in the filter step, and then using the exact divergence to find the
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nearest neighbors in the candidate objects. We could show that this method speeds up music
similarity search by a factor of 10–40 compared to a linear scan, while still retrieving 90–99% of
the true nearest neighbors.

The final chapter merges all the methods we have presented in this thesis to build a high-
quality, large scale music recommendation prototype: “Wolperdinger”. The prototype system
uses an approximate variant of Mutual Proximity requiring a clustering of Gaussian features
to improve the quality of the recommendation method. The filter-and-refine method is used to
efficiently answer search queries. The completed prototype works on a demo collection of 2.3
million songs. It uses one of the top music similarity algorithms today and is able to answer
queries in a fraction of a second on a standard computer.

This paragraph concludes the thesis which, as we hope, will contribute its share to a broader
adoption of automatic music recommendation systems and consequently to novel ideas for inter-
acting with large media archives.
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We present three working applications which use content-based music similarity technology. All
three applications were developed in the course of this thesis and they show possible application
scenarios for music similarity.

• The first prototype shows how a content based playlist generation mechanisms can be inte-
grated in a music player application.

• The second prototype shows how music similarity can be used on mobile devices with limited
display sizes, processing power and interaction possibilities for navigation.

• The third application is a stereo audio player from Bang & Olufsen, which uses a content-
based music recommendation engine we developed, to ensure that music never stops playing.

A.1 Music Recommendation in the Banshee Music Player
Banshee1 is an open-source desktop music player written in C#/Mono2. Although Banshee was
designed for Unix-like environments, the audio player is already ported to multiple platforms.

1http://banshee.fm/, visited August 12th, 2011
2http://www.mono-project.com/, visited August 12th, 2011
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Figure A.1: A screen-shot of the Mirage Banshee extension. The playlist is continuously gener-
ated “by similarity”.

To explore and demonstrate how the integration of a content-based music recommendation
system into a standard digital audio player (DAP) application could work, a playlist generation
plugin was developed. The Banshee DAP was chosen, as it comes with a powerful plugin archi-
tecture wherein the algorithms could be well integrated with the user-interface. The plugin is
called Mirage [Sch07] and it is available freely on the web3 under the terms of the GPL license:

The plugin was accepted in the Banshee Community Extensions4 repository and is already
available in many Linux distributions such as Ubuntu, Fedora (Red Hat) or openSUSE (Novell)
Linux. Figure A.1 shows a screen-shot of Banshee during playlist generation with Mirage.

From a technical/MIR point of view Mirage implements the standard ME music similarity
algorithm. The algorithm is discussed in depth in Chapter 2, Section 2.4.2 (see also [ME05]).
To deal with the artist effect and avoid recommending only songs by the same artist, a partial
artist filter is applied in the playlists. That is, if more than three songs are by the same artist
as the seed song, songs by this artist are omitted in the playlist. Mirage supports two playlist
generation techniques: standard and dynamic playlist generation.

• Standard Playlist Generation: Standard playlist generation creates a static playlist using
a single seed song by searching the collection for similar music tracks using a simple linear

3http://hop.at/mirage, visited August 12th, 2011, since 2009 the plugin is co-maintained by Bertrand Lorentz.
4http://banshee.fm/download/extensions/, visited August 12th, 2011
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scan. A static playlist consists of the twenty-five songs most similar to the query. If the
collection does not change, the static playlists would not change either.

• Dynamic Playlist Generation: Dynamic playlist generation recomputes the playlist every
time a previously recommended song finished playing. To compute the next recommenda-
tions the song heard last acts as new seed song. That way the similarity aspects of the last
song are taken into account in contrary to a static standard playlist seeded with only one
song. The plugin also takes skipping of songs into account. Songs which have been skipped
are excluded from future playlists and are not used to advance the playlist.

A.1.1 Discussion
This first application shows a straightforward way to use content-based music similarity: A
manually selected seed song is used to compute music playlists of similar music on-the-fly. These
mixes can be saved or synced to mobile devices and make it easy for the user to effortless listen
to music other than using random shuffle.

A.2 The Intelligent iPod
The music discovery prototype which is presented here is based on the metaphor of “The Wheel”
from Pohle et al. [PPW05]. It shows how a user could be given a convenient and meaningful way
to access her music on a mobile device. This section is based on our prototype and publication
which presented the work in 2007 [SPKW07].

In Pohle’s “Wheel” each position on a circular playlist-path is associated with a track in the
collection. The circular arrangement is created by applying a Traveling Salesman Problem (TSP)
algorithm to the collection’s full music similarity matrix. As a result of the TSP, similar tracks,
i.e., tracks with a small distance, are grouped together, so that certain regions of the wheel can
be associated certain musical styles. This allows the user to select the kind of music she wants
to listen to by simply turning the wheel into a certain region.

The prototype application presented in this section is implemented on an Apple iPod music
player. It builds on the idea of a circular arrangement of songs by Pohle, and adds automatic
labeling of the music in the playlist interface to support quick, one-touch navigation of music
collections. The automatic labeling is done using community data gathered from last.fm.

A.2.1 Towards the Interface
This section describes the three steps required to build the proposed mobile music browsing
interface: (i) the retrieval of artist-related community data, and (ii) the calculation of audio
similarity between individual music pieces, to (iii) automatically construct and label the circular
playlist.

A.2.1.1 Last.fm-based Artist Clustering

In a first step, we aim at obtaining descriptors from last.fm for all artists in the music collection
on the mobile device. The artist tags collected from last.fm will be used to split the collection
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(a) User Interface (b) Working prototype

Figure A.2: Pictures of the Intelligent iPod: In this interface the music is arranged on a con-
tinuous color bar. The bar displays the main music styles which were discovered for a music
collection using last.fm artist information (2). The individual songs within a selected music style
are arranged by acoustic music similarity. The color bar can be slid to the left/right using the
scroll wheel (4). Additional music information is displayed in a text field (1) and updated while
moving the bar. To listen to the music of a region, the user has to navigate to it and press the
select button (5). A relevant song will start playing (3).
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in large groups of similar artists.
For a specified artist, the last.fm tag data takes the form of a list of words with associated

(normalized) weights. Based on this information, we cluster artists into (e.g., five) main clusters.
Tracks with an unknown artist as well as tracks from artists that can not be found on last.fm,
are put into the best-matching cluster based on the music similarity measure described in the
next section. In each cluster the most frequent tag defines its name.

We implement a simple method to separate the artists into large clusters using the acquired
tags from last.fm: In a first step, each artist is joined with artists sharing the same top ranked
last.fm tag. Besides this initial assignment, each artist is also weighted by the number of asso-
ciated songs in the collection. That way, weighted tag-bins of artists are formed. In a next step,
the bin with the smallest weight is removed and its artists are spread among the remaining bins
according to their second highest ranked tag. After that, again, the bin with the smallest weight
is broken up. This procedure is repeated iteratively until the desired number of clusters is found.
In the case of the prototype we are using five clusters.

An obvious drawback of this simple technique is that not all artists can be directly related
to one of the main clusters since some artists are not assigned any of the top tags at all. The
tracks by those artists can again be associated to a cluster using music similarity.

A.2.1.2 Playlist Generation

Once the top-level clusters are defined, and the association of each track to a particular cluster has
been accomplished, two sub-steps need to be performed in order to create a circular arrangement
of the collection. First, the placement of individual tracks within a particular cluster must be
determined. Second, the different clusters have to be connected.

Both methods use the EP content-based music similarity measure (Chapter 2, Section 2.4.3)
and require the pairwise distances between all music tracks in the collection to be computed.

Arranging Tracks in a Cluster via TSP

All tracks within a region should be arranged based on their audio similarity to obtain a smooth
transition between consecutive tracks and subregions within a given cluster. Here, we adopt
the idea from Pohle et al. [PKS+07] to use a Traveling Salesman Problem (TSP) algorithm to
organize a given music collection. The “cities” to visit are the tracks, while distances between
the tracks are calculated with the EP music similarity function. We use the Minimum Spanning
Tree (MST)-based algorithm as proposed by Pohle et al. [PKS+07]. From the distance matrix of
the tracks in a cluster, an MST is created. The tree is traversed in a depth-first order, and the
tracks are written into a list in the order they are first visited. Finally, the first track is visited
again to form a closed route. Thus, all tracks can be ordered into a circular playlist within each
cluster.

Connecting the Intra-Cluster Playlists

Having a circular playlist for the tracks within each top-level cluster we are in need of a strategy
to optimally connect them. The idea is to find an arrangement of clusters that reflects the
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similarity of the contained music. Furthermore, we need to determine those tracks that are best
suited as links between the clusters.

We decided to use a greedy approach: The output of the previous step is n circular routes,
where n is the number of clusters. To merge them, each of the n circular playlists is broken
at the largest “distance” (i.e., the two consecutive tracks in the playlist with the largest audio
distance between them are searched). These two tracks become the endpoints of the (now linear)
playlist. To connect these n linear playlists, the two most similar endpoints (according to audio
similarity) from different clusters are connected, yielding n − 1 linear playlists. This procedure
is repeated until all intra-cluster playlists are merged to one long circular playlist containing all
tracks in the collection.

A.2.1.3 Automatic Region Labeling

To support an easier orientation within the music collection, the playlist created in the preceding
steps is visualized and augmented with meaningful descriptors. For this purpose, we linearly
arrange the whole playlist along a sliding bar that is colored according to the distribution of the
previously identified clusters. Thus, different kinds of music are represented as different colors
on the bar. Between clusters, colors are faded to support the impression of smooth transitions.
Furthermore, the labels of the top-level clusters are displayed in the center of the corresponding
cluster region on the color bar. While browsing, also additional tags that describe the currently
viewed track are displayed. This allows for an immediate overview of the complete collection.

A.2.2 Prototype
By exploiting information on acoustic similarity and community-based music labels, a music
collection can now be automatically structured and described to allow for easy orientation and
navigation within the collection. As a consequence, regions of musical styles emerge. For demon-
stration, we implemented our prototype interface on an Apple iPod portable digital music player.

Our implementation of the music browsing interface directly integrates in the main mobile au-
dio playback application and makes easy changing of music style possible, even during playback.
Figure A.2 shows the finished prototype implementation and describes its main elements.

To understand how the player is used, the main focus should be put on the continuous color
bar in the center of the screen. The color bar shows the six main music labels which were found to
describe the collection. The labels are weighted and color-coded according to Section A.2.1.3. As
such, the color bar alone allows a quick and coarse first glance on the music collection currently
loaded. For clarity the number of labels displayed is limited to a maximum of six.

In the original Apple iPod player the scroll wheel is mainly used for controlling the playback
volume. For our purpose we remapped the input of the scroll wheel to allow circular movement
of the continuous color bar to select a specific area to play. A static pin overlaying the bar
indicates the currently selected area. In addition to this, a text field displays last.fm tags which
were found for the artists of the selected region.

As soon as the user selects a position on the color bar for playback, the selection is extrap-
olated on a song in the precomputed TSP playlist (see Section A.2.1.2). Since all songs in this
playlist are arranged according to their maximum audio similarity, successive songs should fit
together nicely, making the interface perfect for quick but matching on-the-go playlists.



A.3. BEOSOUND 5 STEREO WITH MOTS 131

Figure A.3: The Bang & Olufsen BeoSound 5 stereo in our office. The stereo integrates a content
based music recommendation system to generate playlists.

A.3 BeoSound 5 Stereo with MOTS
A final example which we want to present here of how content-based music similarity can be used
in applications is the Bang & Olufsen BeoSound 5 home stereo. A picture of the BeoSound 5
is shown in Figure A.3. The stereo uses a content-based music similarity to ensure that the
music never stops playing. The similarity engine which was used is called MOTS, an acronym
for “More Of The Same”.5

The similarity engine was developed as a joint project of Bang & Olufsen and the Austrian
research institute for artificial intelligence (OFAI)6, my employer. I have been the main developer
of the MOTS music similarity library. It is the final application presented in this work and shows
how research results from the music information retrieval area are already picked up by industry
and early adopters to create new products.

5http://www.bang-olufsen.com/beosound5-digital-music-mots, visited August 12th, 2011
6http://www.ofai.at, visited August 12th, 2011
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