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Kurzfassung
In groÿen Musiksammlungen und bei der Arbeit mit groÿen Mengen von
Musikstücken, wird berechenbare Musikähnlichkeit ein immer wichtiger
werdendes Forschungsgebiet. Denn mit einem berechenbaren Ähnlich-
keitsmaÿ läÿt sich Musik zum Beispiel automatisch klassi�zieren, sortier-
en oder zum automatischen Erstellen von Playlists nutzen.

Viele der aktuell verwendeten Algorithmen zur computerbasierten Be-
rechnung von Musikähnlichkeit sind leider aber zu rechen- und speicher-
intensiv, um tatsächlich breiten Einsatz �nden zu können. Diese Ar-
beit widmet sich jenen Problemen und schlägt konkret Lösungen vor:
MP3 Dateien werden direkt zur Ähnlichkeitsberechnung verwendet, die
Rechenoperationen der Ähnlichkeitsberechnung drastisch reduziert und
geeignete Speichermethoden vorgeschlagen.

Jeder der diskutierten Vorschläge wird im Zuge der Arbeit auch in einer
Programmbibliothek zur Musikähnlichkeitsberechnung (Mirage) imple-
mentiert. Mirage kann frei aus dem Internet geladen werden. Die Bib-
liothek wird zur Demonstration ihrer Einsatzfähigkeit sowohl in einem
Musik Player am PC als Plugin zur automatischen Playlist-Generierung
eingesetzt, als auch zur Veranschaulichung, wie Musikähnlichkeit tatsäch-
lich auf einem iPod-MP3 Player eingesetzt werden könnte, verwendet.

Zur Evaluation wird die Bibliothek nach Qualitäts- und Performanzkrite-
rien getestet. Es zeigt sich dabei, dass die vorgeschlagenen Opimierungen
keinen nennenswerten negativen Ein�uÿ auf die Qualität der Ergebnisse
haben, gleichzeitig aber durch den Einsatz der vorgeschlagenen Änderun-
gen sehr beschleunigte Musikähnlichkeitsberechnung möglich ist.
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Abstract
When working with large quantities of music or huge music collections,
computational music similarity is constantly getting more important.
This demand exists, because computable music similarity enables au-
tomatic music classi�cation, sorting or unsupervised creation of music
playlists for listening.

Unfortunately the methods which are currently utilized for computing
music similarity are all too processor- and memory intensive to be used on
a large scale. This work focuses on these problems and proposes concrete
solutions: MP3 �les are directly processed for similarity computation,
arithmetic operations of the matrix calculations are reduced drastically
and adequate storage methods are proposed.

Each optimization which is proposed is implemented in a program li-
brary for music similarity computation (Mirage). Mirage is published
and available freely on the Internet. To demonstrate the capabilities of
the library, it is included in a music player application as a plugin to au-
tomatically generate playlists and it is used to show how music similarity
could actually be used on an iPod-MP3 player.

To evaluate the library, it is tested for quality and speed of the similarity
measure. It is shown that the proposed optimizations have no notewor-
thy negative impact on the quality of the results, but at the same time
highly accelerated music similarity is possible by implementation of the
proposed changes.
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1. Introduction 8

1. Introduction

Over the last years ways of collecting and listening to music underwent
radical changes. Today a music collection is no longer a library of a few
Compact Discs kept in a box. Nowadays a music collection is rather a
collection of usually thousands of digitally compressed audio �les stored
on a computer's hard drive or a portable MP3 player.

Starting with the launch of Apple's iTunes Music Store1 on April 28th
2003, conventional distribution channels for music started �nally shifting
towards the Internet. Today a lot more music stores are online, like Real
Network's Rhapsody2, eMusic3 or Napster4 from Bertelsmann.

With large music collections and easy ways to buy music online, new al-
ternatives of managing the music libraries are necessary. There are many
programs available to manually organize music into genres or playlists.
But with increasing size manual sorting of music becomes an infeasible
job. New automatic ways to manage music are demanded. This is where
the research �eld of music information retrieval (MIR) comes into play.
Current music information retrieval methods o�er ways to automatically
extract useful information from and about music. To do so, the web or
the audio signal is used.

The focus of this thesis lies in extracting information from the audio sig-
nal, more precisely in music similarity algorithms and their optimization
to work with very large music collections. Computational music simi-
larity algorithms concentrate on the extraction of information from the
song's audio signal, to characterize it and to �nd similar sounding music.
To be used with large music collections high speed and memory-e�cient
music similarity methods are needed, which is the central point of this
work.

The paper is divided into the following sections: Section 2 introduces
to audio formats and related work to processing compressed audio. Sec-
tion 3 gives an overview of available music similarity algorithms. Their
functioning is examined and performance critical points in the di�er-
ent phases of the algorithms are identi�ed. This leads leads to Section 4,
where radical optimizations are proposed. In Section 5 a music similarity

1http://www.apple.com/iTunes/store/, last visited March 13, 2007
2http://www.rhapsody.com/, last visited March 13, 2007
3http://www.emusic.com/, last visited March 13, 2007
4http://www.napster.com/, last visited March 13, 2007
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1. Introduction 9

program-library is implemented including all performance optimizations
proposed earlier. The library is evaluated in Section 6 for performance
and quality of the results.

Main contributions of this thesis include:

• A program and a way to directly utilize MPEG 1 audio for mu-
sic similarity, doubling the feature extraction speed for MP3 �les
(Section 4.1).

• Technical optimization of a music similarity measure for high per-
formance operations. Feature comparisons could be made about
100 times faster compared to a standard implementation (Section
4.2).

• Development of a fast music similarity library in C# usable for
large music collections. The library is published free of charge on
the Internet (Section 5.2).

• Implementation of a plugin for a digital audio player program to
show how the automatic playlist generation technique can be used
for large music collections (Section 5.3).

• The proposal of an interactive playlist generation algorithm to im-
prove automatic playlist generation results (Section 5.3.2).

• A prove-of-concept to show how the developed high performance
music similarity library could be used to support browsing and
listening to music on a portable iPod audio player (Section 5.4).

9
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2. Music Audio Formats and Processing

On Computers audio data can be represented in two primary ways: In
the time or frequency domain. Non-technically spoken the time domain
representation shows how a signal changes over time, whereas the fre-
quency domain representation shows how much of the signal lies within
each given frequency band over a range of frequencies. The most com-
mon representation of audio-signals and waveforms is in the time domain,
digitally represented as Pulse-Code Modulation (PCM ) on a computer.
PCM data is usually stored using the well known WAV, AU or AIFF �le
formats. However, most signal analysis techniques work only in the fre-
quency domain. This is why usually standard PCM time domain samples
which are to be analyzed have to be transformed �rst, which is typically
done by using a Fast Fourier Transformation [Bri74] (FFT ).

Besides PCM related �le formats, there are also the popular standard-
ized audio �le formats like MP3, OGG, or AAC. The di�erence of these
formats compared to PCM audio is that the audio signal is stored in a
compressed form in its frequency domain. Because these formats com-
press by removing inaudible frequencies, they are also called �lossy�. The
basic techniques behind the MP3 and AAC audio format are described
in [Bra99]. The royality free OGG Vorbis audio format is described in
[Xip04]. Since most of the audio nowadays is stored in MP3, OGG, or
AAC format, utilizing the fact that they are already stored in a frequency
domain representation, can be used in digital audio analysis. Other re-
lated and popular audio formats like Windows Media Audio (WMA) and
Real Audio (RA) are closed �le formats and can not be used like this since
no public documentation is available.

One of the �rst music information retrieval works which was done in the
compressed MPEG-1 audio spectrum was [ZY02], where a speech recog-
nition system was proposed. The system worked withoud decompressing
the MPEG audio stream. [TC00] works with the uncompressed MPEG
audio spectrum without transforming the audio into a PCM signal. De-
scriptors which were computed were the Spectral Centroid/Rollof/Flux
and the Root-Mean-Square. A wide range of high- and low-level audio de-
scriptors from MPEG-1 compressed audio were tested in [PV01]. Higher
level features included features for audio segmentation and music/speech
determination. Further processing done in combination with compressed
audio �les was done by [WV01] and [SXWK04] for beat tracking and
music summarization.

10
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This thesis adds to these publications by implementing a computational
music similarity measure working directly with MP3 �les.

11
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3. Automatic Playlist Generation and Music

Similarity

To enjoy listening to music in a certain situation, a mostly coherent music
experience is desirable. Consecutive pieces should somehow �t together,
sound similar or have something in common.

A successful radio station remains true to its style, to keep its listeners.
A Dj selects those tracks which mix together best. The perfect automatic
playlist generator tries to do all of this automatically and on the user's
own music collection. It is a personal Dj or radio station, making listening
to music easier and more enjoyable. To support users with such a system
the two closely related research �elds of automatic playlist generation
and computational music similarity play the key role.

3.1. Playlist Generation Techniques

An automatic playlist generator needs to be initiated with some input
from the user. The user needs to specify what he wants to listen to. This
initial music style selection can be done in a very straightforward way,
where the user just supplies music genres or terms which describe the
music he wants to listen to. This approach has many issues, since most
music just does not belong to a single speci�c genre. Besides that, the
de�nition of a music genre is a very subjective one.

A di�erent approach to an automatic playlist generator is a visual one.
The user selects songs on a map visualization of his music. On the map
similar songs are clustered together by acoustic similarity. Playlists can
be created by drawing paths on this music maps. An example of such
a technique is presented in a prototype called PlaySom [NDR05]. This
approach presupposes a fully analyzed music collection, which in turn
requires a good and e�cient similarity measures.

A third technique which can be used for automatic playlist generation is
query-by-example. With this technique, the playlist is usually initiated
by sample tracks which should indicate the musical style the other songs
should have in common. Based on these seed songs the playlist gener-
ator tries to �nd the most similar tracks in the users music collection
to play them. [Log02] evaluates this technique in conjunction with a

12



3.1 Playlist Generation Techniques 13

computational music similarity measure. [PPW05a] improve the query-
by-example technique by incorporating song-skipping behavior into the
playlist generation algorithm. Skipping a song is seen as negative feed-
back, listening to a whole song is regarded as good feedback. By analyz-
ing the feedback data, further playlists are improved. [AP02b] combines
metadata and computationally extracted music information to create
playlists in huge music databases using an adaptive search technique.

Let's have a closer look at at the basics behind the playlist generation
techniques, to show the diversity of approaches available and discuss their
assets and drawbacks.

Standard Playlist Generation Standard automatic playlist generation
usually relies on meta-information like the genre of the track, number a
track has been played, an optional users rating and a good pinch of
randomness to select the next song. This information is usually encoded
in the audio �le or collected from the playback behavior of the user. It is
used by the audio player to sort or search for music. If the music archive
is in a good shape, the tracks are all rated and classi�ed by the user
himself, then this technique works quite well. Typically this strategy
fails, since standard music collections are poorly classi�ed into genres or
are simply too large for manual classi�cation.

Web-Based Metadata A more intelligent way to overcome some of the
shortcomings of the standard approach is using the Internet to automat-
ically try grabbing additional metadata for a song. This is for example
done in [BH03], [KPW04] or [LKM04]. The information gained through
this techniques can then be used to generate playlists. This works quite
well on the artist level, given the artist is well known or has a broad ap-
pearance on the Internet. It does not work well if similarity estimates are
needed for comparing individual songs, since information about a speci�c
song is usually very sparse on the Internet.

Playlists through Social Networks Social networks are a very recent
way to acquire information about users and music taste. A social network
requires the user to sign up and �ll their network pro�le. After that the
services of the network can be used. If the network is used regularly,
it is able to classify the user's preferences, by comparing the pro�le to
the pro�le of all other users. The underlying technique is a collaborative

13



3.2 Music Similarity 14

�lter. A collaborative �lter has the basic assumption that those who
agreed in the past will also agree in the future [KSS97].

Examples of social networks are MySpace5 or Orkut6. Social networks
have recently also been used for automatic playlist generation. The
last.fm7 network collects information about your songs and music lis-
tening habits and compares these to others. This is done in two ways
and is working quite well: A plugin for various music players reports the
playing statistics of songs back to the network. And second, it is possible
to tag tracks with keywords to feed the network.

Audio Analysis for Playlist Generation Another way to automati-
cally generate a playlist of similar tracks is by computationally extracting
patterns from the audio signal to describe the song. These patterns are
called descriptors or features and are typically numerical values. If two
music pieces have similar descriptor values they should sound the same
in the aspect, the descriptor tries to extract from the audio signal. Thus
it is possible to compare the tracks to others or automatically order the
tracks. Extracting descriptor information is the most di�cult part, since
the descriptors should match an aspect of what humans hear and what
they perceive in music. Over all other playlist generation techniques au-
tomatic audio analysis has the advantage of handling all pieces of music
equally. The results do not depend on what most users think, like in
social networks, or how somebody selected a genre for the song.

3.2. Music Similarity

In order to be able to automatically generate playlists, similarity of music
has to be computable somehow. Music similarity is the very basic thing
to enable generation of automatic playlists, based on audio analysis.

A music similarity measure makes computational comparisons between
two music pieces possible, and thus enables an automatic similarity rank-
ing of music pieces (a playlist). A music similarity measure can also be
used to automatically cluster similar pieces together. Today the best

5http://www.myspace.com/, last visited March 13, 2007
6http://www.orkut.com/, last visited March 13, 2007
7http://www.last.fm/, last visited March 13, 2007
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3.2 Music Similarity 15

techniques to compute music similarity are all based somehow on statis-
tical frequency spectrum analysis. These methods usually compute the
so called timbre similarity.

Besides similarity measures trying to describe the overall frequency spec-
trum of a music piece, there exist also a huge variety of descriptors try-
ing to extract certain perceptual parameters from the track. Some of
these include for example: Audio Power [AHH+01], Spectrum Spread/-
Flatness/Centroid [MPE], Harmonicity [MPE], Periodicity [PDW04] or
Tempo [Ell06] [GKD+06].

The currently best working techniques to compute music similarity are
the frequency spectrum analysis methods. The results of the yearly
MIREX contest at the ISMIR8 conference clearly show that the tim-
bre similarity methods dominate and currently perform best. Summa-
rizing the frequency spectrum of a music piece to compute something
like timbre similarity became popular through the works of Acoutourier
and Pachet [AP00], who use Gaussian Mixture Models to approximate
spectra of music. The next sections give an introduction and overview
to the most prevalent music similarity algorithms available today.

3.2.1. Mel Frequency Cepstral Coe�cients

The Mel Frequency Cepstral Coe�cients (MFCCs) play an important
role in the �eld of music analysis. Although they were �rst used for
speech analysis [YWB93], they are currently adopted as the dominant
feature in music information retrieval to compactly describe the ampli-
tude spectrum of music. MFCCs have been introduced to music infor-
mation retrieval researchers by Beth Logan in [Log00].

MFCCs are short-term spectral-based features, where each step in the
creation of MFCC features is motivated by perceptual or computational
considerations. The perceptual intention of the MFCCs can be seen in the
logarithmic spacing of the frequency bands to approximate the cochlea in
the human ear more closely. Computationally MFCCs also try to reduce
the data by eliminating unnecessary redundancies. This is done through
a Discrete Cosine Transform (DCT ) [ML93].

The calculation of the MFCCs includes the following steps:

8http://www.ismir.net/, last visited March 13, 2007
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3.2 Music Similarity 16

1. The audio signal is �rst divided into frames, usually spanning about
20− 25ms of audio.

2. A windowing function (usually a Hamming or Hann window) is ap-
plied to the audio frame to avoid edge e�ects in further processing.

3. The discrete Fourier transform (DFT) [OS89] transforms each audio
frame from the time domain into the frequency domain. So the
short-time power spectrum P (f) is obtained.

4. The spectrum P (f) is transformed along its frequency axis f (Hz)
into its Mel [P+93] M(f) representation, to approximately re�ect
the human ear's perception.

M(f) = 2595log10

(
1 +

f

700

)
. (1)

5. Finally the highly correlated Mel values are reduced by applying
the Discrete Cosine Transform [ANR74] (DCT ) on the Mel values.
This results in the �nal N cepstral features for each frame.

3.2.2. Logan & Salomon (LS)

Beth Logan and Ariel Salomon were one of the �rst to publish a music
similarity function based on audio signal analysis [LS01].

Feature Extraction The feature extraction process of this method works
by describing the spectrum of a music piece by trying to �nd clusters of
similar audio data frames. To do so �rst the audio data is downsampled
to a 16khz, mono signal and N 25.6ms wide frames overlapping the previ-
ous frame by 10ms are created. Each of these frames is then transformed
into the frequency domain by an FFT. After that the MFCC coe�cients
(13 − 30) are computed, so that the music piece is now described by N
MFCC frames each one describing the spectrum of 25.6ms of audio.

The frames are then clustered to create the model. If k-means clustering
is used, the number of clusters has to be �xed, it can be variable if if X-
means [PM00] clustering is used. The signatures of each cluster represent
a song's model. This is the mean, covariance and the weight of the cluster
in respect to the other clusters.

16



3.2 Music Similarity 17

Feature Comparison To compare songs or their respective models, the
spectral signatures of the songs are used to compute the Earth Movers
Distance (EMD) [RTG00]. The EMD computes the distance between
two distributions. In this case the song signatures are the distributions
and the distance is seen as a similarity measure.

The EMD is de�ned as the minimum amount of work needed to trans-
form one signature into the other. In the case of Logan & Salomon's
algorithm, �work� is de�ned as the symmetrized Kullback-Leibler (KL)
divergence [Pen01] between two distributions. Let dpiqj

be the KL diver-
gence between two clusters pi, qj and fpiqj

the cost of moving probability
mass from one cluster to the other [RTG00], then the EMD is de�ned
as,

EMD(P, Q) =
Σm

i=1Σ
n
j=1dpiqj

fpiqj

Σm
i=1Σ

n
j=1fpiqj

. (2)

The EMD can also be computed if the numbers of clusters in the two sig-
natures is di�erent which happens when X-means clustering was used.

3.2.3. Aucouturier & Pachet (AP)

In 2002 Jean-Julien Aucouturier and Francois Pachet presented a tech-
nique for music similarity in [AP02a] which shaped the �eld of timbre
similarity together with [LS01].

Feature Extraction This feature extraction process tries to describe
the spectrum of music pieces using multiple Gaussian mixture models
(GMMs) [Bis95].

A short-time Fourier transformation is done on 50ms of audio at a time.
Then the MFCCs are calculated for the selected audio frames. Only
the �rst eight MFCC coe�cients are used in this implementation. After
that an Expectation Maximization (EM ) [Bis95] algorithm tries to �nd
mixtures of three Gaussians to �t the MFCC vectors best. The EM algo-
rithm is initialized by k-means clustering. In the end a song is modelled
by three eight dimensional Gaussian distributions �tting the distribution
of the MFCC vectors over a song.

17



3.2 Music Similarity 18

Feature Comparison Similarity computation is done by computing the
likelihood of samples from GMMsonga given GMMsongb and vice versa.
Since the original MFCC vectors are not available at this point any more,
Monte Carlo sampling [Bis95] is used to generate samples for the likeli-
hood computation. The resulting similarity should be symmetrized (see
Equation 3).

sima,b =
p(a|b) + p(b|a)

2
(3)

3.2.4. Mandel & Ellis (ME)

Michael Mandel and Dan Ellis published a new method to compute music
similarity in 2005 [ME05]. Their proposed music similarity algorithm was
combined with Support Vector Machines (see [CST00] for an introduction
to SVMs) for automatic genre classi�cation of songs. The algorithm took
part in the MIREX genre classi�cation contest at the ISMIR conference
20059, where it performed very fast and was the third best entry.

Feature Extraction The feature extraction process of the algorithm is
as simple as this: The �rst 20 MFCCs are calculated for a given song. The
mean and covariance are computed for the resulting MFCC vectors. A
model is represented by a 20×20 covariance matrix and a 20-dimensional
mean vector. Thus the song is represented as a single Gaussian distribu-
tion. These values can be interpreted as the overall frequency spectrum
distribution of the song. Like in all other timbre music similarity models,
all temporal aspects of music are ignored here too.

Feature Comparison Comparison of two songs modeled by this method
is done by computing the Kullback-Leibler (KL) divergence [Pen01].
Since the KL divergence is not symmetric, its symmetrized form is used
for similarity computation.

9http://ismir2005.ismir.net/, last visited March 13, 2007
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3.2.5. Pampalk, Rauber & Merkl (PRM)

Elias Pampalk and Andreas Rauber published a music similarity measure
named Rhythm Patterns [PRM02] in 2002. Since 2004 the rhythmic
descriptors are also referenced as �Fluctuation Patterns�, when Pampalk
published a Matlab toolbox for music similarity [Pam04].

Feature Extraction The feature extraction process for the �uctuation
patterns is divided into two stages. In the �rst stage several psychoa-
coustic transformations are applied to the audio signal, including a trans-
formation to the Bark scale [SIA99], spectral masking e�ects, computa-
tion of the sound pressure level (dB-SPL) and �nally computation of its
Sone values (�Sonogram�). In the second step the rhythm patterns, a
time-invariant representation for each music piece is computed. Rhythm
patterns try to describe how strong and fast beats are played within each
analyzed frequency bands.

Feature Comparison Comparison of rhythm patterns is very simple.
Similarity is computed as the Euclidean distance between the two rhythm
patterns which are simply seen as vectors.

3.2.6. Flexer, Pampalk & Widmer (FPW)

In 2005 Arthur Flexer, Elias Pampalk and Gerhard Widmer proposed
an algorithm to work with Hidden Markov Models [Rab89] (HMMs), to
include the temporal context of music in a similarity measure [FPW05a].
HMMs allow analysis of time series by statistically modeling the locally
stationary data and their transition probabilities.

However it is shown that using HMMs does not improve the performance
of the music similarity measure, although HMMs seem to better capture
details of the sound of music recordings.

Feature Extraction To create a model for a song the �rst eight MFCC
coe�cients are computed for the song. The frame size used is 23.2ms
with a 50% overlap. To capture a bigger temporal context di�erently
sized texture windows [TC02] can be used too. The HMMs are then
trained with the MFCC values using a Gaussian Observation Hidden
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Markov Model. The Expectation Maximization [Bis95] algorithm trains
the HMM, which �nally models the song.

Feature Comparison The similarity of two HMM models is computed
by �rst using the forward algorithm to identify the most likely state
sequences corresponding to a given time series and second by the use of
the log-likelihood function to compute the similarity.

3.3. The Most Suitable Algorithm

So which algorithm is the most suitable to truly achieve a highly perfor-
mant music similarity measure in regard to speed and quality?

Again the results from the last MIREX Audio Music Similarity and Re-
trieval contest (see Table 1) from the ISMIR 2006 conference show that
the currently best working techniques (EP and TP in Table 1) are all
based on ME [ME05]. EP combines the ME technique with �uctuation
patterns and TP includes a technique called �proximity veri�cation� to
improve results.

EP [Pam06a] TP [Poh06] VS LR [LR06] KWT KWL
0.430 0.423 0.404 0.393 0.372 0.339

Table 1: The �nal Audio Music Similarity and Retrieval Results from the
MIREX contest 20061. The scores are averaged ratings of playlists,
which were generated by the respective algorithm.
1http://www.music-ir.org/mirex2006/index.php/Audio_Music_Similarity_and_Retrieval_

Results

In addition to the MIREX contest results, the evaluations in [Pam06b]
also show very good results for ME. In [Pam06b] the ME technique is ref-
erenced as a one-Gaussian (1G) method and scored best when combining
it with �uctuation pattern information. Besides the rather good quality
of the results, ME also has the advantage of being very simple and fast
to compute - making it an ideal candidate for truly high performance
music similarity.
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Based on these results and considerations the ME technique for comput-
ing music similarity is further used as foundation for developing the high
performance music similarity library in this thesis.

3.4. Identifying Performance Critical Points

Performance is a very critical point when it comes to adaptation of tech-
niques for real applications. In our case a playlist generator which takes
days to analyze a 5000 songs music collection and minutes to generate a
single playlist, is rather useless, even if it all works well. Users just do not
like long delays, they are annoying. A playlist generator working in the
background and using up all your computers resources is not desireable
either.

As it can be seen in Table 2, music similarity was very slow in 2004, but
current techniques are already getting faster and more usable. To take
performance to the next level, �rst the main performance bottlenecks
in the current music similarity computation process chain have to be
identi�ed.

Feature Extraction Distance Computation
(per song) (per song)

2004 60 seconds 500 milliseconds
2005 3 seconds 3 milliseconds

Table 2: A table from [Pam05] shows the progress made in music similar-
ity computation in terms of performance. Note: in this case feature ex-
traction assumes that the music piece is already in PCM/mono/22khz
format, which is not usual for standard music collections.

3.4.1. Feature Extraction

In the feature extraction phase multiple components play an important
role. Usually feature extraction has to be done once per track in the
collection. Since nowadays almost all music is available and stored in
compressed form, analysis usually includes the decoding of the �les. Pop-
ular encoding techniques for digital music include AAC/MP4, WMA and
MP3, where the most popular format is certainly MPEG 1 Audio Layer
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3 (MP3 ). For an MP3 �le the feature extraction process with the ME
method would look like this (Figure 1 illustrates this):

1. Decoding of the MP3.

2. Conversion to a mono signal.

3. Further downsampling to a 11025hz signal.

4. Applying a STFT with a typical window-size of 1024-2048 samples.

5. Transform the signal to the Mel scale.

6. Calculate the MFCCs for each frame.

7. Compute the mean and covariance of the MFCC vectors to retrieve
the �nal song model.

So if the music is available in compressed form, like it can be seen in
Figure 1 for an MPEG 1 Audio Layer 3 �le, the usual way of analyzing
the �le would include transforming the audio data from the frequency
domain to the time domain and back which includes resynthesizing, an
FFT step and a downsampling step. Avoiding this would result in a big
performance win.

3.4.2. Feature Comparison

The second stage which is very time consuming and plays a key role in
the whole process, since it is used every time a playlist is computed, is
the feature comparison process.

For tn track models a query for similar tracks includes two major func-
tions which are repeated n times and account for most of the time spent
in a query:

1. The comparison computation. To �nd the most similar tracks in a
collection with n songs, given a single seed song ts, all other tracks
have to be compared with ts. An optimized comparison algorithm
would therefore noticeably speed up a query.

2. Loading the track models from disk. A query requires an iteration
over all n track-models. Unless it is feasible to hold all n track
models in memory, the iteration over all tracks is usually a disk i/o
heavy operation. Reducing or optimizing disk i/o would result in
a big speedup.

22



3.4 Identifying Performance Critical Points 23

Figure 1: Normal similarity feature extraction.

The following paragraphs describe the aspects in detail which would need
to be optimized to achieve a high-performance query system.

Feature Comparison Since the tracks tn are modelled as multivariate
Normal densities (single Gaussians), similarity between two tracks t1, t2
can be computed by calculating the Kullback-Leibler (KL) divergence as
described in [ME05]. The KL divergence for normal densities t1(x) =
N(x; µt1 , Σt1) and t2(x) = N(x; µt2 , Σt2) is
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KLN(t1‖t2) =

1

2

(
log

(
det (Σt1)

det (Σt2)

)
+ Tr

(
Σ−1

t1
Σt2

)
+ (µt1 − µt2)

′ Σ−1
t1

(µt2 − µt1)− d

)
,

(4)

where Tr(A) denotes the trace of the matrix A, Tr(A) = Σi=1..nai,i. The
KL divergence is not symmetric. To symmetrize it the two divergences
are simply added up,

DKL(t1, t2) = KLN(t1‖t2) + KLN(t2‖t1). (5)

By symmetrizing the similarity the combined KL divergence can be fur-
ther simpli�ed. The sum log(

det(Σt1 )

det(Σt2 )
) + log(

det(Σt2 )

det(Σt1 )
) is 0 and can be left

out. For similarity comparisons where all track models tn have the same
dimension d, d can be left out too. Finally the constant factor 1

2
can

be skipped too, simplifying a single feature comparison to a modi�ed
symmetrized KL divergence,

DKL(t1, t2) =

Tr
(
Σ−1

t1
Σt2

)
+ Tr

(
Σ−1

t2
Σt1

)
+

Tr
((

Σ−1
t1

+ Σ−1
t2

)
× (µt1 − µt2)× (µt2 − µt1)

′) . (6)

By removing the normalizing factors d and 1
2
the result is no true dis-

tance measure any more. But since the KL divergence is only used for
similarity comparisons among identically computed values, leaving out
those constant factors has no impact on the results.

Loading Track Models After the feature extraction process every mu-
sic track in the collection has an associated track-model ti which is com-
puted from the audio track i in the feature extraction phase. A single
query for similar tracks requires all n models to be compared with the
seed song and therefore being loaded from disk once. If there are only few
tracks in the collection, the models can be loaded from disk into memory
once, if memory is limited or there is a huge collection, the tracks will
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have to be loaded from disk for each similarity query. Since disk i/o is a
very time consuming process, it should be little.

To achieve low disk i/o the track models themselves should contain ab-
solutely no unnecessary data, to keep the models small in size. E�cient
and clever storage enables fast access times. A threaded iteration process
for unblocked comparisons should be implemented to achieve this.
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4. Towards High-Performance Playlist

Generation

After having identi�ed key points which should be addressed when cre-
ating a high-performance playlist generator, possible solutions to these
problems are proposed.

4.1. Rethinking the Feature Extraction Process

Current feature extraction is a computationally very intensive task and
takes about 4 seconds (Table 2) per piece on a reasonable new computer,
if the music piece also needs to be decoded and downsampled to be
analyzed as described in Section 3.4.1.

Due to the popularity of the MP3 �le format, the next sections take a
deeper look at MP3 �les and evaluate possibilities to speed things up for
MP3 audio. Other compressed audio formats are discussed in Section
4.1.3.

4.1.1. MP3

MPEG-1 Audio Layer 3, usually referred as MP3 [MPE92], is the most
common and most widely known audio compression standard today. It
is a lossy audio compression format, meaning that the original audio can
not be restored 1:1. The encoding and compression of audio is achieved
by removing perceptually inaudible frequencies, which makes MP3 �les
very small and ideal for streaming over the internet or sharing.

MP3 has its origins in the EU supported EUREKA project and was
�rst published as part of the MPEG-1 standard in 1994. It quickly
got momentum after the Fraunhofer Institute released the �rst MP3
encoderl3enc. Coupled with the rise of the Internet and peer to peer
�lesharing clients, MP3 became the standard for listening, collecting and
sharing music on computers. Although with recent successes of online
music stores, di�erent compression formats with copy control mechanisms
emerged, the majority of all digital music is still MP3. Even car stereos
or DVD players today support MP3 playback.
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Bit- and Samplingrates MP3 o�ers many bitrates to encode audio.
Valid bitrates are listed in Table 3. 128kbit/s and 160kbit/s at 44.1khz
are used most, since few audible di�erences between CD quality can be
heard. Audio on a CD has 1411.2kbit/s (16bits/sample × 44100hz ×
2channels). MP3 was speci�ed to achieve best compression rates and
quality with 128kbit/s audio sampled at 44khz. In addition to static
bitrates, MP3 also o�ers variable bitrates (VBR). Variable bitrate MP3
�les are switching the bitrate of their frames dynamically, as required by
the encoded signal complexity.

Valid bitrates (kbit/s) 32, 40, 48, 56, 64, 80, 96, 112,
128, 160, 192, 224, 256, 320

Sampling frequencies (khz) 32, 44.1, 48

Table 3: Available bitrates and sampling frequencies for MP3 encoding
[MPE92].

Filestructure Audio data in MP3 �les is stored in a very convenient
way. Each compressed frame is preceded by a header identifying it as
MPEG 1 Audio Layer 3 audio and specifying bitrate and samplingrate.
The detailed MP3 header format can be seen in Table 4.

Since the header precedes every audio frame, MP3s can be streamed
easily over the Internet.

Encoder MPEG-1 does not specify how to encode MP3 �les, it only
speci�es precisely how the data is to be decoded, thus giving much space
for implementation of optimal encoders.

An MP3 audio data frame consists of 576 Hu�man encoded values, de-
scribing about 32ms of audio. Each of the 576 values in the audio frame
describes a frequency value and is spaced from 0 − fs

2
hz. Besides these

standard frames, MPEG-1 Audio Layer 3 also de�nes frames with 192
frequency values (short block), which have a higher time resolution and
can be used by the encoder to encode transient signals.

27



4.1 Rethinking the Feature Extraction Process 28

Bits Description
0− 10 Frame sync
11− 12 MPEG Audio Version (1)
13− 14 Layer version (Layer 3)
15 CRC protection
16− 19 Bitrate (see Table 3)
20− 21 Samplingrate (see Table 3)
22 Padding
23 Private
24− 25 Channels (mono, joint stereo, Dual channel stereo)
26− 27 Joint Stereo mode extension
28 Copyrighted
29 Original
30− 31 Emphasis

Table 4: The MP3 frame header [MPE92].

Decoder MP3 decoding is precisely de�ned in the MPEG standard
[MPE92], where a reference MP3 decoder is described. If an MP3 decoder
achieves the same output as the reference decoder, it is called �bitstream
compliant�. The MP3 decoding process is split into the following steps
(Figure 2).

The �rst three steps, Hu�man Decoding, Requantize and Reordering
transform the MP3 bitstream into its 576 frequency values. These values
are divided into 32 equally spaced subbands each containing 18 frequency
values (32× 18 = 578). Spacing of the subbands and frequency values is
done linearly in the range of 0− fs/2 according to the Nyquist-Shannon
sampling theorem (i.e. the ith value of a frame describes the frequency
f = i

576
fs).

To reconstruct the original PCM signal three consecutive MP3 frames
are needed, which are processed by the Antialiasing, the Inverse MDCT
and Filterbank and Windowing components. Three frames at a time have
to be used, since the original frames overlap 50% with the previous and
next one.

Hu�man Decoding The raw MP3 bitstream is Hu�man coded. Hu�-
man coding [Huf52] is a method to code a sequence of data by us-
ing the minimum number of bits necessary. The Hu�man encoded
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Figure 2: Steps to decode an MP3.

MP3 bitstream is decoded using the appropriate decompression ta-
bles. The decompression tables are speci�ed in the ISO/IEC stan-
dard document [MPE92]. The decompressed bitstream contains
the original 576 scaled frequency values and their scalefactors to
reconstruct the original audio. After Hu�man decoding the values
are still scaled and make up three di�erent components: Values
between −15 and 15 with high precision for the low frequency sub-
bands, the values -1, 0 and 1 for high frequency subbands and
zero values for the highest inaudible subbands which should be re-
moved. The encoder uses psychoacoustic analysis to identify and
remove inaudible frequencies.

Requantizing and Reordering In the requantizion step, the scaled fre-
quency values obtained from the Hu�man decoding process, are
requantized to get the original frequency values. To do so the
scalefactors extracted in the previous step are used to compute
the original values by rescaling. If a short block is being processed
the frequency values need to be reordered, since short blocks are
stored di�erently to improve Hu�man compression e�ciency.

Antialiasing Before reconstructing the original audio, alias reduction
needs to be done. To do so the MPEG standard requires eight
butter�y calculations to be applied between the frequency lines.

Inverse Modi�ed Discrete Cosine Transform (IMDCT) The IMDCT
is the inverse operation of the MDCT [BR01]. The MDCT trans-
forms 2n time samples, x0, . . . , x2n−1, into n frequency samples,
f0, . . . , fn−1. The IMDCT does the opposite and retransforms the
n frequency domain samples into 2n time domain samples,
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xi =

n
2
−1∑

k=0

fk cos
( π

2n

(
2i + 1 +

n

2

)
(2k + 1)

)
. (7)

At the �rst glance it may seem strange that the IMDCT works, be-
cause of the di�erent number of input and output samples. But in-
deed the IMDCT is perfectly reversible, because subsequent blocks
overlap, samples are simply added and the error cancels out over
time. This e�ect is called time domain aliasing cancellation (TDAC )
and is described in [BR01].

Filterbank and Windowing In the �nal step of the MP3 decoding pro-
cess the synthesis polyphase �lterbank transforms the 32×18 time-
domain samples into 576 PCM samples. The synthesis polyphase
�lterbank is the reversion of the polyphase �lters which were ap-
plied during the encoding of the MP3 and work on the 32 subbands.
The MPEG standard strictly [MPE92] de�nes the �lters, which are
very similar to the polyphase quadrature �lters from [Rot83]. Win-
dowing is used to �lter out undesired aliasing.

4.1.2. Exploiting MP3

So how can the fact that audio is stored as an MP3 �le help speeding up
the feature extraction process? As one can see in the previous section,
an MP3 decoder has to transform audio from the frequency domain into
the time domain to retrieve PCM samples. On the other hand all music
information retrieval algorithms usually work in the frequency domain.
So the signal is retransformed from the time (the PCM signal) into the
frequency domain.

It is obvious that there would be a big speed increase if one could get the
frequency domain representation of an audio �le directly by working with
the frequency-domain samples of the MP3 �le. To do so the MP3 needs
to be decoded just before the uncompressed frequency-domain data is
transformed into a PCM signal. This must be be done right after an-
tialiasing, just before resynthization of the audio into PCM. If this is not
done after antialasing (i.e. before reordering the bitstream) disordered
or unscaled values would make the results unusable.

30



4.1 Rethinking the Feature Extraction Process 31

By omitting the retransformation of the signal into the time-domain, a
computationally intensive step is skipped and further steps like comput-
ing the STFT not necessary any more. Downsampling the signal is simply
done by removing the higher frequency lines from the decoded bitstream.
So if it is necessary to downsample a 44.1khz MP3 to 11.025khz, only the
�rst 144 frequency lines (576/4) of the 576 have to be decoded resulting
in another speed boost. Overall this means that the necessary feature
extraction steps would be reduced to (illustration in Figure 3):

1. Intercept the decoding of the MP3 after antialasing and before
resynthesizing to PCM.

2. Transform the signal onto the Mel scale.

3. Calculate the MFCCs for each frame.

Figure 3: Modi�ed feature extraction.

Section 6.2 shows the performance gained by using this approach. How-
ever some peculiarities have to be thought of, when using the MP3 in
its frequency domain representation. The MPEG-1 Audio Layer 3 works
with window sizes of 1152 usually at 44.1khz (≈ 26ms/window). It has
a high time resolution. Current music similarity methods like [AP04],
[ME05] or [Pam06b] work with larger window sizes at lower sampling
rates. The usual window sizes vary from 1024− 2048 at a sampling rates
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of 11025 − 22050hz. This is equivalent to approximately 93ms of audio
and a three times higher frequency resolution.

But in the further feature analysis, the frequency resolution is reduced
further anyway by the application of the MFCCs, so that the smaller
window size does not carry weight in terms of quality.

Another parameter of the STFT applied in the feature extraction phase
is the window function and window overlapping. Common window func-
tions applied in music similarity algorithms is the Hann or Hamming
window [OS89]. MPEG-1 Audio Layer 3 [MPE92] de�nes its own win-
dow function (see Equation 8 and Figure 4 for an illustration),

wn = sin

(
π

2
sin2

[
π

2N

(
n +

1

2

)])
. (8)

Figure 4: Window functions used in music similarity algorithms compared
to the window function used in the MP3 ISO/IEC Standard [MPE92].

The consequences of working with a higher time resolution (smaller win-
dow sizes) and the di�erent window functions are evaluated in Section
6.3, where the results indicate that the di�erences have almost no neg-
ative impact on the results of the music similarity algorithm. Similar
�ndings are published in [AP04], where the results of music similarity
algorithms with di�erent window sizes were evaluated.
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4.1.3. Other Audio Formats

All assumptions which were made for MP3 �les are valid for most of the
compressed audio �les, if they are stored compressed in the frequency
domain. This enables fast feature for AAC/MP4 or WMA if the adequate
decoder is modi�ed in a similar way as was done in the case of MP3.

One thing would have to tested when mixing direct models of di�erent
compressed �le formats, for example models of AAC and MP3 �les. Their
respective frequency domain representation uses di�erent window sizes
and sampling rates. It has to be evaluated if their �nal models can be
compared without a notable reduction of quality in the results.

4.2. Faster Feature Comparison

The feature comparison is, in contrast to the feature extraction, required
to be run every time a query for similar songs is started10. As discussed
earlier two key parts need to be taken care of to ensure fast generation
of playlists.

4.2.1. Optimizing the Similarity Computation

To decrease the time needed for the similarity computations (see Equation
6), the necessary raw arithmetic operations are examined, to see if some
of the matrix operations can be optimized.

A single similarity computation (the symmetrized KL divergence, see
Section 3.4.2, Equation 6) can be split into four parts: the trace of a ma-
trix and vector product, the di�erence of two matrices and vectors, and
a product of a matrix and a vector. A detailed list of matrix operations
and their required number of arithmetic operations can be seen in Table
5.

All together a single comparison takes 4n3 + 2n2 + 5n− 1 operations to
�nish, so for a standard song model with a d = 20 it takes exactly 32899
arithmetic operations.

10An alternative could be to store the entire n× n
2 matrix of pairwise similarities once

and for all. That is not practicable for large music collections for obvious reasons.
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Matrix Operation Number of Operations
Tr(N ×M) 2n3 − n2 + n− 1

N −M n2

v − w n
Tr(v × w′) n2 + n− 1

N × v 2n2 − n

Operations for DKL, Equation (6) 4n3 + 2n2 + 5n− 1

Table 5: Number of arithmetic operations for computing the KL diver-
gence in a standard way. N, M are n × n matrices, v, w are n × 1
vectors.

The two matrices used in the modi�ed KL divergence similarity computa-
tion (Equation 6) are the covariance matrix and its inverse. To optimize
the computation one can take advantage of the symmetry of the matrices
and calculation of the matrix trace (Tr(A)), which are the main keys for
cutting back the number of arithmetic operations to compute the KL
divergence drastically:

Matrix Symmetry The covariance matrix and its inverse are symmet-
ric matrices. To calculate matrix calculations with these matrices
the part below the matrix diagonal does not have to be computed.
This reduces the number of arithmetic operations required for cal-
culations with symmetric matrices by about 50 percent. See Table
6 for detailed estimates in respect to the KL divergence.

Matrix Trace The trace of a matrix is the sum of its diagonal elements,
Σai,i. The KL divergence includes two matrix trace operations of
a matrix product. Since the matrix trace is the sum of the matrix
diagonal the full product of the two matrices is useless in this case.
Only the diagonal elements of the product have to be calculated to
compute the trace. This reduces the number of operations by an
order of magnitude from O(n3) to O(n2).

These considerations lead to a new table of required operations for an
optimized KL divergence (Table 6).

After these optimizations to compute music similarity, a single compar-
ison of standard song models with d = 20 takes 1470 operations, which
is about 95% less than it takes with the standard version. Figure 5
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Matrix Operation Number of Operations
Tr(N ×M) n2 − 1

N −M 0.5(n2 + n)
v − w n

Tr(v × w′) n
N × v n2

Operations for DKL, Equation (6) 3.5(n2 + n)

Table 6: Reduced arithmetic operations for a similarity comparison, tak-
ing the special properties of the matrices into account. N, M are sym-
metric n× n matrices, v, w are n× 1 vectors.

pictures the reduction of arithmetic operations for computing the KL
divergence.

Figure 5: KL Divergence, for ME optimized KL Divergence.

4.2.2. Persistence

Fast access to and loading of models is of course also a key part in
fast playlist generation. Since smaller models can be loaded faster, the
symmetry of the covariance and its inverse is again taken into account.
Utilizing the symmetry only about half of the original values need to
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be stored, reducing the number of values per model v from 2 ∗ n2 + n
(n = 20, v = 820) down to n2 + 2n (n = 20, v = 440).

Especially for huge collections it is it is impossible to hold all models
concurrently in memory, so there has to be a fast way to load the models
from disk. A small but optimized plain database �le �ts this requirements
best to ensure quick access to the stored models. Oracle Berkeley DB11

or SQLite12 are good candidates for this. The implementation described
in the next section shows a practical solution to this using SQLite.

11http://www.oracle.com/database/berkeley-db/db/index.html, last visited
March 13, 2007

12http://www.sqlite.org/, last visited March 13, 2007
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5. Mirage

Mirage is the name of the music similarity library which was programmed
during the work for this thesis. The name Mirage is a short form for
Music Information Retrieval Agent and because of its focus on perfor-
mance also an allusion to the fast French military jet called Mirage. Its
goal was to make fast, state-of-the-art music similarity easily accessible
for developers and to show its usage in two selected applications. The
implementations which were done include:

Mirage/An E�cient Music Similarity Library TheMirage music sim-
ilarity library implements the music similarity measure as described
in [ME05]. The library is presented in Section 5.2. It is pro-
grammed in the C# Language [Spe02] and uses the Open Source
Mono13 .NET framework to implement its functionality. It includes
all performance optimizations proposed in the chapters before.

1. Direct feature extraction from MP3 �les. MP3 �les are read
through a modi�ed MP3 decoder. This makes full decoding of
the MP3, re- and downsampling unnecessary and eliminates
the need for a subsequent STFT to analyze a �le, speeding up
the feature extraction process (see Section 4.1). Byproduct is
a modi�ed MP3 decoder which can be used for other audio
analysis tasks involving MP3s.

2. Optimized similarity computation. By taking the properties
of the selected music similarity algorithm into account, many
redundant arithmetic operations could be discarded. All those
�ndings were implemented in a very optimized way making
Mirage high-performance.

An Automatic Playlist Generation Plugin Mirage was integrated as
a plugin in a popular digital music player program. In addition
to making Mirage easily usable in the player, a fast, incremental
playlist generation algorithm is proposed and implemented. The
digital audio player was chosen to be easily extensible to integrate
well with an automatic playlist generation plugin. Figure 11 shows
the music player program with the automatic playlist generation
plugins ready for use. The plugin, its usage and the proposed
playlist generation algorithm are described in detail in Section 5.3.

13http://www.mono-project.com/, last visited March 13, 2007
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The Traveler's Sound Player Implemented on an Apple iPod A
proof-of-concept for the idea of making use of music similarity on a
portable MP3 player was realized on an Apple iPod. It shows how
Mirage could be used to support a popular portable audio player
with music similarity information. This is described in Section 5.4.
The idea is based on the so called �Traveler's Sound Player� was
presented in [PPW05b].

All source code of Mirage and its applications described here is freely
available under the GPL License Version 2. Its homepage is http://hop.

at/mirage where the source code can be downloaded.

5.1. Selecting and Modifying an MP3 Decoder

As described in Section 4.1.2, the MP3 decoding process needs to be in-
tercepted just before the decoded signal is transformed from the frequency-
domain into the time-domain. In the MP3 decoding process (depicted in
Figure 2) the interception has to be done right after the IMDCT and an-
tialiasing step before the signal resynthesis. The computationally intense
resynthesis step can be skipped.

For the Mirage library Mp3Sharp14, a native MP3 decoder written in
C#, was evaluated. Mp3Sharp is a port of the opensource Java MP3
decoder JavaLayer15. Similarly as in Java, Mp3Sharp operates in a fully
managed C# environment and unfortunately performs very poorly. The
idea to developMirage entirely in C# was therefore discared. At least the
modi�ed MP3 decoder had to be developed outside the managed .NET
stack. For this reason well known opensource MP3 decoders were evalu-
ated regarding decoding performance. Table 7 summarizes the results of
the evaluation.

The managed decoder Mp3Sharp is about six times slower than Mpg123,
the fastest evaluated MP3 decoder. Mpg123 is also two times faster than
Madplay and the Libmad based decoder, SoX. Ffmpeg is performing fast
too, but still Mpg123 is faster and was therefore picked for Mirage.

14http://www.heroicsalmonleap.net/mle/mp3sharp/, last visited March 13, 2007
15http://www.javazoom.net/javalayer/javalayer.html, last visited March 13,
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MP3 decoder Decoding Time (s)
Homepage
Evaluation command
madplay,
http://www.underbit.com/products/mad/

madplay -o wave:test.wav test.mp3

4.261s

mpg123,
http://www.mpg123.de/

mpg123 -w test.wav test.mp3

2.104s

�mpeg,
http://ffmpeg.mplayerhq.hu/

ffmpeg -i test.mp3 test.wav

2.474s

sox,
http://sox.sourceforge.net/

sox test.mp3 test.wav

4.639s

mp3sharp,
http://www.heroicsalmonleap.net/mle/mp3sharp/

Mp3Sharp.exe test.mp3

12.203s

Table 7: Speed comparison of MP3 decoders. Ten di�erent MP3 �les were
used to test the speed of the MP3 decoders. Timings are averaged over
three consecutive runs and the ten MP3s encoded with 192kbit/sec at
44.1khz. Average song length was 286sec.

Mpg123 Mpg123 is able to decode MPEG-1 Audio Layer 1, 2 and 3
�les. It is available under the open source Lesser GNU Public License
(LGPL), which allows modi�cations to the source if the modi�cations
to the source code are published too. For this project the source code
for the Audio Layer-3 decoder-part was modi�ed. The modi�cation is
called Fft123 and is available on the Internet16. Like Mpg123, Fft123 is
released under the LGPL.

Modifying Mpg123 was straightforward. The main loop for MP3 de-
coding is in the layer3.c:do_layer3() function. Right after the IMDCT
(layer3.c:III_hybrid()) the output bu�er is simply written to a �le and
the resynthesis is skipped by returning from layer3.c:do_layer3(), after
the bu�er is written:

As mentioned before in Section 4.1.2, the resynthesis can be left out,
since the transformation into the time-domain is not necessary. Skipping
resynthesis is done in Fft123 by returning to the main library right after
writing to the �le descriptor with fwrite(). This makes the processing

16http://hop.at/mirage/fft123/, last visited March 13, 2007
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layer3.c:do\_layer3()

III_get_scale_factors();

III_dequantize_sample();

III_antialias();

III_hybrid();

+ for (i = 0; i < SSLIMIT; i++) {

+ for (j = 0; j < SBLIMIT_CLIP; j++) {

+ fbuf[j*SSLIMIT + i] = hybridOut[0][i][j];

+ }

+ }

+ fwrite(fbuf, sizeof(real), SSLIMIT*SBLIMIT, FILE);

+

+ return clip;

Figure 6: The changes needed to be made to the Mpg123 MP3 decoding
function are marked with �+�. The �gure shows a simpli�ed version
of what has to be done to write the frequency representation of an
MP3 to a �le. Changes like opening the �le, closing it and infrastruc-
ture around these calls are left out for convenience, but are of course
necessary.

even faster, since full decoding is not needed. Skipping the resynthesis
enables one to read an MP3 about 2.5 times faster compared to the full
decoding process. Table 8 illustrates this.

MP3 decoding (mpg123) Power spectrum decoding (Fft123)
0.954s/mp3 0.382s/mp3

Table 8: Speed comparison of fully decoding an MP3-�le to PCM and
only decoding the power spectrum with Fft123. The average speed
over decoding ten MP3 �les encoded at 192kbit/sec with 44.1khz to
a mono/11025khz signal is given in the table. The average length
of the MP3 �les was 286sec. The respective calls to compare the
decoding speed were: fft123 -m -w test.fft test.mp3 and mpg123 -m

-4 -w test.wav test.mp3

Fft123 is a standalone application. The modi�ed Mpg123 decoder writes
the powerspectrum to a speci�ed �le. The �le is basically a raw �oating
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point matrix (576 × n). The frames (576, 32bit �oat values) are stored
sequentially. The frame's values are spread linearly over half of the sam-
pling frequency of the original MP3 �le (fs/2). A single value of an
MP3-frame at 44.1khz describes a frequency range of 39hz.

The syntax for calling Fft123 is documented in Figure 7. Figure 8 visual-
izes the output of Fft123 using two di�erent MP3 music �les as input.

fft123 [-k N] [-n N] -m -w <ps-filename> <mp3-filename>

Writes the power-spectrum as encoded in <mp3-filename>

to <ps-filename>

-m power spectrum mode

-w <ps-filename> write power spectrum to <ps-filename>

-n N decode only N frames

-k N skip first N frames

Figure 7: Usage of the �t123 command.

Figure 8: Visualization of the Fft123 powerspectrum output. Two
128kbps MP3 �les were used. It can be seen that high frequencies
are cut o�, because the encoder perceives them as inaudible. However,
in some frames higher frequencies were conserved by the encoder to
ensure proper signal reconstruction. The amount of high frequencies
which are conserved by the encoder depends on the bitrate used to
encode the �les. The two �les are very di�erent kind of music. The
Horowitz piece is piano music while Liquido is heavy guitar punk mu-
sic.
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5.2. Library

The core of Mirage is its main library - Mir. The functionality of this
library can be easily included into any C# program requiring access to
a fast music similarity measure.

During implementation of the library, it was taken care that where pos-
sible high performance was a goal. Internally this sometimes led to
unattractive coding results, since some object oriented design patterns
had to be thrown overboard. From a user's point of view these optimiza-
tions are fortunately hidden.

Important points in achieving a high performance music similarity library
were:

• Usage of the C# unsafe operator in large matrix operations, to
disable array boundary checks.

• Directly exposing variables in objects, to avoid slow access through
get/set functions. This is against all object oriented ideas, but was
absolutely necessary to perform fast.

• Integration of the SQLite17 database into Mirage to store the mod-
els.

Usage of Mirage is very simple. To compute the similarity between two
MP3 �les three lines of code are enough (Figure 9).

Scms m1 = MirNg.Analyze('song1.mp3');

Scms m2 = MirNg.Analyze('song2.mp3');

System.Console.WriteLine('Similarity between m1 and m2 is:' +

m1.Distance(m2));

Figure 9: Using the Mirage library for similarity computation.

For a full documentation of the Library including usage examples see
Appendix A.

17http://www.sqlite.org/, last visited March 13, 2007
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5.3. Banshee Plugin

Banshee18 is a program to manage large music collections on the GNOME
desktop environment19. It indexes the user's music collection and makes
rearranging, renaming, creating playlists, and listening to music easy. It
has interfaces for the most popular portable digital audio players and is
able to rip and import audio CDs. It is a typical �digital music hub�.
Programs like this are usually referred to as iTunes20-clones, since Apple
made this way of managing music popular with its iTunes application.

Banshee was chosen as a base platform to develop an automatic playlist
generation plugin based on the Mirage music similarity library. The plu-
gin should handle large music collections, make easy playlist generation
possible and integrate seamless into the player. Banshee was selected,
because it is programmed in C# and has a very �exible plugin interface
to integrate well with an automatic playlist generator. Mirage �ts into
Banshee very well, due to the fact both are written in the C# program-
ming language.

Registering as a plugin with Banshee is easy. The plugin has to put itself
into the Banshee.Plugins namespace and derive the methods from the
abstract class Banshee.Plugins.Plugin. Multiple functions need to be
overwritten to be recognized as a Banshee plugin (Figure 10).

public class MiragePlugin : Banshee.Plugins.Plugin

{

protected override string ConfigurationName;

public override string DisplayName;

public override string Description;

public override string[] Authors;

protected override void PluginInitialize();

protected override void PluginDispose();

}

Figure 10: Functions a Banshee plugin has to implement.

After the plugin is registered with Banshee through the PluginInitial-

ize() call, the music library of the user is immediately scanned for new
MP3s. If new MP3s are found, they are analyzed with the help of Mirage

18http://banshee-project.org/, last visited March 13, 2007
19http://www.gnome.org/, last visited March 13, 2007
20http://www.apple.com/itunes/, last visited March 13, 2007
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and added to the database to be used for playlist generation. This is done
in a background thread, so all playlist generation functions are available
in parallel. If a playlist is generated while new MP3s are being analyzed,
�les which are not yet analyzed are simply not considered during playlist
generation. PluginInitialize() adds the user interface elements of the
plugin to Banshee.

5.3.1. Playlist Generation Algorithms

The plugin implements two possible ways to generate a playlist. Both
methods can be used in Banshee by dropping the seed song(s) on the
respective playlist generator item (as seen in Figure 11).

The Standard Playlist Generation Algorithm. This is a very straight-
forward way to automatically generate a music playlist. A playlist
is computed using one or more seed songs. If a single song is used
as a seed song �rst the according similarity model is searched in
the database. After the model is available to the algorithm, the
seed model is compared with all other song models in the database
and their pairwise similarity is computed. After that the resulting
list of similarities is ordered and the n closest songs are returned as
the �nal playlist. If n > 1 songs are given as a seed, the similarity
values are summed and weighted equally.

The Continuous Playlist Generation Algorithm. The standard play-
list generation as described before has one issue. All songs in the
playlist are just similar to the seed song. The playlist could contain
songs which are found to be similar because of di�erent acoustic
aspects. So they are all similar in some aspect to the seed song, but
are not necessarily similar among each other, which is disturbing
when listening to the playlist piece-by-piece.

To work around this issue, a continuous playlist generation al-
gorithm was implemented. The basic playlist generation concept
to �nd similar songs stays the same but the playlist dynamically
adopts itself as the user progresses with it. When the algorithm is
initialized by a seed song only the �ve most similar songs are re-
turned. If the user then then starts listening and plays more than
60% of a song, a new playlist, taking the currently played song as
seed, is appended and replaces the unplayed songs from the old
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playlist. This simple technique ensures continuous music experi-
ence and works very well. By listening to music this way, the user
can also easily develop the playlist in a certain musical direction of
his choice, by simply skipping songs he does not like, to initiate new
playlists on suggested songs he does like. It is the recommended
technique to automatically generate playlists in Banshee.

5.3.2. Using the Plugin

Figure 11: The Mirage plugin in the Banshee digital audio player.

In order to use the plugin in Banshee the following prerequisites need to
be obtained and installed:

• Mono (Version >= 1.1.17) available at http://www.mono-project.
com

• Fft123 available at http://hop.at/mirage/fft123

• The Banshee music player, of course.

Installation of the plugin is straightforward. Mir.dll, which can be ob-
tained from the Mirage homepage has to be copied into the /.gnome2/-

banshee/plugins directory. After that Banshee needs to be started, where
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the plugin can now be activated. To activate it select �Edit� then �Plu-
gins� on the Banshee menu and activate it. Immediately after the plu-
gin was successfully loaded two new playlists appear on the right panel:
�Playlist Generation� and �Continuous Playlist Generation�.

After the plugin is activated all songs which are availabe in the users
collection need to be analyzed once �rst before automatic playlist gener-
ation is possible. This takes some time, depending on the size of the users
collection and the computer being used. If Banshee was started from a
console window, progress can be monitored there. When all songs are
analyzed, they are ready to be used for automatic playlist generation.

To use the playlist-generator in Banshee, a seed song to start with has to
be dragged & dropped onto one of the playlist generator items on the left
sidebar. You can see the sidebar and playlist generator items in Figure
11. The items �Playlist Generator� and �Continuous Generator� expose
the two playlist generation techniques which were proposed in Section
5.3.1.

5.4. Portable Music Similarity on the iPod

Another application of Mirage and music similarity in general was in-
spired by [PPW05b]. With the �Traveler's Sound Player� it describes a
way of making use of music similarity information on a portable audio
player. The main idea of the player is to arrange all songs in a collec-
tion in a playlist, so that each subsequent song has on average maximum
similarity with its predecessor. This is done by �rst computing the full
audio similarity for each pair of tracks and second by using a travelling
salesman algorithm for optimal arrangement of the playlist. With the au-
tomatic arrangement by similarity, a playlist with areas of similar songs
emerges. These areas can be browsed by the Traveler's Sound Player us-
ing a turning knob. When a selected song is �nished, the player advances
to the next similar track in the list.

The idea here was to use Mirage for music similarity computation and
modify a real iPod MP3 player to work like the Traveler's Sound Player.
See Figure 12(a) for a picture of the modi�ed iPod.

To make the TSP player idea work on the iPod, the collection �rst needs
to be analyzed. This needs to be done o�ine on a computer since the
processing power of an iPod can not cope with such tasks. After having
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(a) A modi�ed Apple iPod with Music
Similarity.

(b) User interface of the Mirage iPod
application

Figure 12: Using Mirage on the iPod.

analyzed the collection, the full similarity matrix is computed. All of
this is easily done using the Mirage library. The full similarity matrix
is further needed to compute the optimum arrangement of the songs
around the TSP player's knob. The optimum arrangement is calculated
using Kruskal's minimum spanning tree algorithm [KJ56]. After that the
playlist is ready to be transferred to the iPod.

To use the playlist on the iPod in a similar way like it is done on the TSP
player, the iPod needs to be modi�ed. Since Apple does not support mod-
i�cations or third party plugins on the original iPod �rmware, the iPod
was modi�ed to use the Open Source �rmware Rockbox21 which is freely
available on the Internet. Rockbox comes with a full cross-compilation
environment making development for the iPod ARM platform easy. Spe-
ci�c installation installation instructions of the �rmware and the devel-
opment environment are published on the Rockbox homepage22. The

21http://www.rockbox.org/, last visited March 13, 2007
22http://www.rockbox.org/twiki/bin/view/Main/IpodPort, last visited March
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Open Source �rmware was then adopted to match the functionality of
the Traveler's Sound Player (TSP):

• The iPod wheel is used to emulate the turning knob in the TSP
player. To do so the main loop in the Rockbox �rmware was mod-
i�ed to check the iPod wheel sensor for its status and position.

• The standard user interface of the Rockbox �rmware was modi�ed
to allow TSP player like browsing of the music collection. The
main di�erence between the TSP player and this implementation
is, that the songs are not arranged along the iPod wheel/a turning
knob, but along a colorbar on the screen (see Figure 12(b)). By
sliding the �nger over the iPod wheel sensors, di�erent regions of
the colorbar can be selected. The current selection is indicated on
the screen with a black arrow. On top of the colorbar the currently
selected song is displayed and can be listened to by pressing the
select button on the iPod. The rainbow colors of the colorbar have
no meaning, they just support the user in learning where di�erent
styles of music can be found.

So actual usage on the modi�ed MP3 player is relatively simple: The
scrollwheel of the iPod allows to move the slider on the colorbar into
di�erent color regions and thus music similarity areas. Once a song or
area is picked, it can be played by using the select button from the iPod.
When the currently selected song is �nished, the player progresses to the
next most similar song in the list. It so allows fast browsing of a music
archive and quick selection of music styles to listen to, making it perfect
for quick playlist generation on-the-go and thus showing another nice
possibility of how to use Mirage for music similarity applications.

13, 2007
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6. Evaluation

This section evaluates performance and quality of the music information
retrieval library Mirage. All evaluations were done on the same com-
puter, in the same operating system and environment. The machine
where everything was evaluated was an AMD AthlonXP 3000 machine
with 2100MHz. It has 1GB of RAM and a fast 250 Gigabyte Serial
ATA harddrive. All tests were run under the Ubuntu Linux (Version
7.04, �Feisty Fawn�) operating system with Mono C# (Version 1.2.3)
installed.

To compare Mirage and its feature extraction, Mirage was extended for
testing purposes. It was adapted to include normal processing of MP3
�les. In the adapted version these steps are done during feature ex-
traction (see Figure 1, which depicts the usual way of processing MP3
�les).

• The MP3 was fully decoded using Mpg123: mpg123 -q -n 4600 -k

570 -m -w wavfile mp3file

• The PCM data is then downsampled to 11025hz mono using SoX:
sox -q -t wav wavfile -r 11025 -c 1 -l -f -t raw rawfile rate

• The raw downsampled PCM data is then windowed using a stan-
dard 2048 point Hann window, with no overlapping. An STFT is
computed for each window using the fast Fftw library23.

• Further processing is the same as in the standard Mirage library.

In the experiments this feature extraction process will be referenced as
�standard� feature extraction, the fast feature extraction implemented in
Mirage will be referenced as �Fft123� feature extraction. Like for the
main library, it was taken care that standard feature extraction works as
fast and well as possible.

6.1. Testsets

There were four di�erent testsets used for evaluatingMirage. The testsets
di�er in size, genre distribution and, of course, music style.

23http://www.fftw.org/, last visited March 13, 2007
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Small ISMIR04 Personal Huge
Pieces 120 1311 3852 16781
Genres 16 8 n/a 21

Table 9: Statistics and names of the testsets used for evaluating Mirage.

Small The smallest collection is a very arti�cial one. It consists of only
120 di�erent songs, but compared to the other collections it has a very
broad genre distribution. This collection was hand selected. It was taken
care that all genre classes are about the same size. The genres of this
collection include:

Genre Tracks Genre Tracks
Alternative 7 Classic Orchestra 6
Dance 9 Happy Sound 6
Hip Hop 12 Pop 6
Rock 4 Romantic Dinner 6
Blues 8 Classic Piano 9

Eurodance 9 Hard Pop 8
Mystera 8 Punk Rock 9

Rockn Roll 7 Talk 6

Table 10: Genres and number of tracks for the Small testset.

The full list of tracks and their genre assignment for this testset can be
seen in Appendix B. This small collection is quite useful for quick tests.

ISMIR04 This collection consists of 1311 songs. The songs are all roy-
alty free and come from Magnatune24. They can be downloaded for free
and were being made available at the ISMIR conference in 2004. It is still
possible to download the full collection from the ISMIR 2004 website25

and compare genre classi�cation results with this testset.

Personal This is a personal user's collection and consists of 3852 MP3
�les. This music collection is just used for performance measuring of

24http://www.magnatune.com/, last visited March 13, 2007
25http://ismir2004.ismir.net/genre_contest/index.htm, last visited March 13,
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Genre Tracks Genre Tracks
Classical 640 Electronic 229

Jazz & Blues 52 Metal 29
Pop 6 Punk 16
Rock 95 World 244

Table 11: Genres and number of tracks for the ISMIR04 testset.

the feature extraction and comparison. The tracks are not assigned to
genres.

Huge The Huge collection consists of 16781 di�erent �les, which have
all assigned genre labels from GraceNote26.

Genre Tracks Genre Tracks
Alternative & Punk 2132 Blues 275
Books & Spoken 187 Classical 627

Country 1894 Easy Listening 134
Electronica & Dance 2828 Folk 174
Gospel & Religious 10 Hip Hop & Rap 718

Holiday 68 Industrial 22
Jazz 3388 Latin 378
Metal 53 New Age 280
Pop 550 R&B 1120

Reggae 227 Rock 1395
World 321

Table 12: Genres and number of tracks for the Huge testset.

6.2. Performance

Since high performance was a key goal in this project, it is evaluated
thoroughly. First the two di�erent feature extraction processes (Normal
and Fft123) are compared to measure the performance gain of using the
Fft123 method. In a second part the optimized KL divergence component
of the feature comparison is compared to an unoptimized one.

26http://www.gracenote.com/, last visited March 13, 2007
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6.2.1. Feature Extraction

To compare feature extraction performance, the Personal music collec-
tion was analyzed. A small program using theMirage library was written
to test performance. Two runs were conducted, in the �rst run normal
feature extraction was used, in the second run feature extraction using
Fft123 was activated and timed. The runtimes are illustrated in Figure
13.

Figure 13: Speed of importing MP3 �les using two the standard and
Fft123 feature extraction technique. Standard feature extraction is
about twice as slow as Fft123 extraction. In total, analysis of the
whole collection took 45 minutes using the Fft123 technique and 1
hour 29 minutes using the standard way. The �uctuations come from
di�erent MP3 encoding quality. If the graph touches the zero line, the
MP3 could not be decoded or an error occurred during the process.

During the feature extraction of the 3852 MP3 �les, some �les failed
to produce usable feature matrices. This usually happens if the MP3
decoder is not able to properly decode the �le. Typical observed failures
for Fft123 were mislabled MP3 �les and non-standard Variable bitrate
�les (see Table 13).
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Failed �les (standard) Failed �les (�t123)
20 42

Table 13: Failed MP3 �les in the feature extraction. Fft123 is not as
robust yet. Some mislabled MP2 �les or non standard conforming �les
are left out, since Fft123 is unable to process them properly yet.

6.2.2. Feature Comparison

To compare performance between an unoptimized version of the KL di-
vergence and the optimized version in Mirage, the runtime for 100000
comparisons was measured and averaged. The standard KL divergence
without the possible optimizations was implemented in Matlab. Matlab
was chosen, because it is a mathematical programming language opti-
mized for fast matrix operations. It does the computation very fast, but
does not optimize any part of it, whereas the C# version allows all �ne
grained optimizations to be implemented. The Matlab code to compute
the standard symmetrized KL divergence is depicted in Figure 14(a).
The variables c1, c2 are the covariance matrices, ic1, ic2 the precom-
puted inverse of the covariance matrices and m1, m2 the mean vectors of
the two models.

tic;

for i=1:100000,

kld = trace(c1*ic2) + trace(c2*ic1)+...

trace((ic1+ic2)*(m1-m2)*(m1-m2)');

end

toc/100000

(a) Matlab

Timer t = new Timer();

t.Start();

for i=1:100000 {

float kld = scms1.Distance(scms2);

}

Dbg.WriteLine(t.Stop());

(b) Mirage

Figure 14: The KL divergence performance test implementations.
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The code which was used to evaluate the speed of the Mirage library is
shown in Figure 14(b). The variables scms1, scms2 are the two statistical
cluster model object instances to be compared.

The results of comparing the two versions can be seen in Table 14. The
optimized KL divergence implemented inMirage is about 100 times faster
than the Matlab version, but yields exactly the same results, since only
unnecessary computations are left out. When working with reduced �oat-
ing point precision, the optimized version also yields more accurate re-
sults, because less operations need to be carried out which results in a
smaller overall error.

Feature Comparison (Matlab) Feature Comparison (Mirage)
1.297075ms 0.01262ms

Table 14: Speed of a single feature comparison using Matlab and Mirage.
Mirage is about 100 times faster than the standard Matlab code

6.3. Quality

As mentioned the faster feature comparison has absolutely no impact on
the quality of the similarity computation results. But what impact does
the faster feature extraction process have on the quality of the models
which are extracted?

To be able to somehow compare the quality of the music similarity algo-
rithm, automatic genre classi�cation tests were carried out. Automatic
genre classi�cation tests can be done if all tracks in a collection are la-
beled with a genre. When doing this kind of test, it absolutely should
be kept in mind that a genre label is no indicator of music similarity
at all. If the genres of two songs match, it is just more probable that
they sound similar, nothing more. Despite of these problems with music
genres, automatic genre classi�cation is a good indicator of how good
a music similarity algorithm works. Genre classi�cation tests are cur-
rently accepted as a method to automatically evaluate music similarity
algorithms. They are also part of the annual genre classi�cation contest
carried out at the ISMIR27 (International Conference on Music Informa-
tion Retrieval).

27http://www.ismir.net/, last visited March 13, 2007
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The automatic genre classi�cation carried out here is a simple nearest-
neighbor leave-one-out classi�cation and produces a genre confusion ma-
trix:

1. All pieces in a music collection are assigned an adequate genre label.

2. The �les in the collection are analyzed and the full similarity matrix
is computed for all pieces in the collection.

3. Then a genre classi�cation confusion matrix is computed so that
each song is assigned the genre of its most similar song.

4. In the confusion matrix the predicted genre of a song is plotted
against its actual membership.

5. The confusion matrix diagonal shows the classi�cation accuracies
for each genre, which is the number of correctly classi�ed songs
divided by the total number of songs in the class.

Here are the overall results from the genre classi�cation tests for the
Small, ISMIR04 and Huge collections.

Classi�cation Accuracy Small ISMIR04 Huge
Standard Method 60.8% 82.8% 52.0%
Fft123 Method 52.2% 82.2% 52.0%

Table 15: The overall genre classi�cation accuracy. It is de�ned as the
number of all correctly classi�ed songs divided by the number of songs.

In general it can be seen that the genre classi�cation accuracy of the
Fft123 method is a bit lower than the accuracy of the normal method.
8% di�erence in the Small testset may seem large at �rst, but absolute
di�erence is only 10 falsely classi�ed songs. The �uctuations in this
testset are large. As the other tests on the Huge and ISMIR04 sets show,
genre classi�cation accuracy is about the same. This makes working with
the fast Fft123 feature extraction a compelling option, giving a two fold
speed increase during feature extraction.

Detailed results of the genre classi�cation tests are visualized on the
following pages via confusion matrices.
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(a) Standard

(b) Fft123

Figure 15: Genre classi�cation confusion matrix for the Small collection.
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(a) Standard (b) Fft123

Figure 16: Genre classi�cation confusion matrix for the ISMIR04 collec-
tion
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(a) Standard

(b) Fft123

Figure 17: Genre classi�cation confusion matrix for the Huge collection
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6.4. Subjective Evaluation

To give the reader a feeling how playlist generation works, some example
playlists are presented in this section. All playlists were generated on the
Personal collection. Good, bad and average results are shown.

Ace of Base - Beautiful Morning (Groove Radio Edit)
1 Stefan Raab - Ein Bett im Kronfeld
2 Lara Fabian - I Am Who I Am (Album Version)
3 Vanessa Amorosi - Absolutely Everybody
4 Anastacia - You Trippin' (Album Version)
5 Black Eyed Peas - Where Is The Love (Radio Edit)
6 Die Deutschmacher - Geh West
7 Melanie Thorton - Wonderful Dream
8 Antonia - Wenn Der Hafer Sticht (Radio Version)
9 Basis - Ich Lieb' Dich Immer Noch
10 JoJo - Leave Out (Get Out)

Table 16: An average playlist. The seed song is a typical happy and
groovy kind of music. The best result is the 4th song which �ts perfectly
to the seed. The grey highlighted pieces do not �t in the playlist, they
are both German songs and are very country style.

Die Ärzte - Sommer, Palmen, Sonnenschein
1 Die Ärzte - Vokuhila
2 Die Ärzte - Ein Lied für dich
3 Audiosmog feat. Tobi Schlegel - Daylight in your Eyes
4 Die Ärzte - Helmut Kohl Schlägt Seine Frau
5 Die Prinzen - Deutschland
6 Die Ärzte - Schunder Song
7 JBO - Ich Sag' J.B.O.
8 Lorie - Week End (Album Version)
9 Franz Ferdinand - Darts of Pleasure
10 The Ordinary Boys - Boys Will Be Boys

Table 17: A very good playlist result. Initial seed song is a guitar heavy
punk rock song. Three similar songs come from the same artist, and
the other songs �t the theme of the seed very well.

One may argue that the very good playlist (see Table 17) is not that good
at all, since the French song Lorie - Week End (Album Version) does not
�t into a playlist generated with a German punk rock song, or it is no
punk rock at all. But that kind of results is the best you can expect,
since this method does not do language nor genre detection. It is best in
�nding songs with similar instrumentation, making it a good choice for
casual music listeners, not for music purists.
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Robbie Williams & Nicole Kidman - Something Stupid
1 Marc Anthony - You Sang To Me
2 Jürgen von der Lippe - Guten Morgen Liebe Sorgen
3 Ren - Rainyday
4 Blondie Maria
5 Nena - Lass Mich Dein Pirat Sine (New Version)
6 Ayreon - My House On Mars
7 Udo Jürgens - Tausend Jahre Sind Ein Tag
8 Chicago - Let's Take A Lifetime
9 Sonny & Cher - I Got You Babe
10 Steiermark Quintett - Matterhorn

Table 18: A very bad playlist result. Initial seed song is a very romantic
song. Only 5 out of 10 songs were romantic too, and matched the seed
theme.

Robbie Williams & Nicole Kidman - Something Stupid
1 Marc Anthony - You Sang To Me
2 Marc Anthony - Yo Te Quiero

Marc Anthony - Amor Aventurero
3 Anastacia - How Come The Work Won't Stop

Anastacia - One More Chance
Anastacia - Secrets
Scorpions - White Dove

4 Lara Fabien - No Big Deal (Album Version)
5 Celine Dion - A New Day Has Come

Shakira - Whenever, Wherever
6 Alizee - Moi Lolita
7 Mariah Carey - Vision Of Love
8 Sarah Connor - Sweet Thang
9 Sarah Connor - Make U High
10 Sarah Connor - Can't Get None

Table 19: A continuous playlist generated using the continuous playlist
algorithm proposed in Section 5.3.1 initiated with the same seed song
as in the playlist from Table 18. The last song listened to is always
the seed for the next playlist. Songs which were skipped are crossed
out. This results in a very continuous music experience, in contrary to
Table 18 no un�tting songs appear in during listening to the playlist.
Even the skipped songs �t into the romantic theme of the seed song.
To avoid repeating songs from the same artist, an artist �lter could be
added easily.

The bad playlist result shown in Table 18 shows some weaknesses of the
algorithm, namely songs where the statistical spectrum models do not
su�ce to produce good playlists. One can escape these very bad results
when using the continuous playlist generator, a technique which was
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implemented in the Mirage Banshee plugin and was presented in Section
5.3.1. Table 19 uses the same seed song, but the continuous playlist
generation algorithm. The songs which are crossed out were skipped,
the other songs in the playlist were used during the continuous playlist
generation process.

The continuous playlist generator can be seen as a generator which gives
intelligent proposals for the next song to be played.

61



7. Conclusion 62

7. Conclusion

The work on the Mirage library and its surrounding components which
was described in this thesis should be seen as a starting point to make
music similarity work for a broader audience. Primary goal was a scalable
implementation of a well working music similarity algorithm usable for
large digital music collections which users tend to have nowadays.

7.1. Summary

This thesis has demonstrated how to achieve high performance improve-
ments on a selected music similarity algorithm. More precisely faster
ways to extract features and compare them were proposed. Optimized
feature extraction dealt with extracting features directly from compressed
audio �les like MP3s, and an improved feature comparison method showed
that there is much space to optimize the Kullback Leibler divergence for
similarity comparisons.

Mirage, a music similarity library, was developed (Section 5) including all
proposed optimizations. To demonstrate the utilizability of the library,
a plugin for a music player was written making automatic playlist gen-
eration possible for everyone. Besides this an iPod was modi�ed to show
how music similarity information could already be used on portable music
players. Evaluations of the library (Section 6) evince that feature extrac-
tion performance could be doubled and similarity computation could be
accelerated to be about 100 times faster than an unoptimized routine. All
of this is possible without reducing the quality of the similarity algorithm
results.

7.2. Future Work

To improve on the performance and quality several directions for further
work are possible: Mirage could be extended to directly work with other
popular compressed music �letypes besides MP3. Popular audio �letypes
like AAC, WMA or OGG are important candidates. The speed of a
similarity computation could be enhanced by using heuristics to faster
�nd matching song models. For the chosen way to compute similarity
models are nothing else than a gaussian distribution. A simple heuristic
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could just look at the mean values to pre�lter songs which are de�nitely
not similar to the seed song to exclude them from similarity-search.

More work could also be done on improving the quality of the similarity
measure. The measure could be made better by combination with other
methods like it was successfully done in [Pam06a]. Additional descriptors
could be used to post�lter playlist results to, for example, include only
songs with similar tempo[Ell06]. Tempo is a good candidate, because
rhythmic aspects are wholly left out in the current similarity measure.
Another way to improve the quality could be the inclusion of an outlier
detection �lter like described in [FPW05b] to �lter a playlist for unwanted
outliers.

To summarize, this work has shown some very compelling enhancements
to current music similarity algorithms, which should be thought about
when designing a high performance music similarity application, making
it hopefully useful for further research in this topic.
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Appendix A

A. Mir Library Documentation

A.1. Main Classes

MirNg (← System.Object)

Is the main class, which is used for playlist generation and searching
for similar songs. Usually one just uses the Analyze() method to cre-
ate a Scms similarity object out of an MP3. To get a playlist use the
SimilarTracks() method, which queries the database for the most sim-
ilar tracks. Adding track models to the database is done with the Db

class.

static Scms Analyze(string file)

Analyzes the given MP3 �le for automatic playlist generation and
returns a Scms object describing the MP3 �le. The returned Scms

can be used to compare the model directly to another Scms ob-
ject or it can be stored in the database by using the Db::Add()

method. The method internally utilizes the Mpg123FileReader and
Mfcc classes to generate the Model.

�le The �lename of the MP3 which needs to be
analyzed.

Return value The Scms object which was created by ana-
lyzing the MP3 �le speci�ed as parameter.

static void CacheIt(Db db)

Caches all Scms objects from the database for faster access. To use
the cached objects and take advantage of the cache, the Similar-

TracksCached() method has to be used after calling this method.

db The database connection which should be
used to cache the Scms objects.
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static int[] SimilarTracks(int[] id, int[] exclude, Db db)

Searches for the most similar tracks to the track IDs in id and
returns a sorted playlist by similarity. By using exclude IDs can be
excluded from being considered in similarity computation.

id An array of track IDs which should be in-
cluded in �nding the most similar tracks (or
its Scms objects)

exclude An array of track IDs which should be ex-
cluded from the search.

db The database connection which should be
used for the queries.

static int[] SimilarTracksCached(int[] id, int[] exclude)

Searches for the most similar tracks to the track IDs in id and
returns a sorted playlist by similarity. By using exclude IDs can
be excluded from being considered in similarity computation. This
method uses a cache for retrieving the Scms objects and can only
be used if the cache was initialized once with the CachIt() method.

id An array of track IDs which should be in-
cluded in �nding the most similar tracks (or
its Scms objects)

exclude An array of track IDs which should be ex-
cluded from the search.

Scms (← System.Object)

Scms is short for Statistical Cluster Model Similarity and is the class
in the Mirage library which integrates most of the Music Information
Retrieval techniques. An instance of an Scms model can be obtained by
creating it manually or using the MirNg.Analyze() method. The most
important method in the Scms class is the Distance method - it com-
putes the similarity between two Scms objects, and thereby the similarity
between its associated tracks. Persistence functions like FromBytes() or
ToBytes() can be used to store the models on disk, if the database pro-
vided by Mirage can not be used.
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Scms(Matrix mfcc)

Creates a new Scms object using an MFCC matrix computed by
the Mfcc class.

mfcc An Mfcc Matrix which should be used to cre-
ate the model from.

float Distance(Scms scms2)

Computes the similarity between two Scms models. The lower the
returned value, the more similar are the compared Scms objects (and
its associated tracks). The higher the returned value is, the more
distinct are the two models. Because of this relation the function
is called Distance().

scms2 The Scms to compare.
Return value The perceived similarity of two Scms objects.

The closer they are the more similar are the
associated tracks of the objects. This func-
tion can be used to create a playlist of similar
songs.

static Scms FromBytes(byte[] buf)

This function is used to deserialize an Scms object from its raw byte
array.

scms2 The serialized bytes, which represent the
Scms object.

Return value Returns the Scms object which was recon-
structed using the given byte array

byte[] ToBytes()

Serializes the Scms object to a byte array. This byte array can be
written to a �le or database, and can be reconstructed by using the
static FromBytes() method.

Return value The Scms object serialized to a byte array.
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CovarianceMatrix cov

The covariance describing the Scms. Do not write to this �eld. It is
exposed this way for performance reasons.

CovarianceMatrix icov

The inverted covariance describing the Scms. Do not write to this
�eld. It is exposed this way for performance reasons.

Vector mean

The mean vector describing the Scms. Do not write to this �eld. It
is exposed this way for performance reasons.

Db (← System.Object)

The database connection object. It is used to store Scms models, which
are used to for playlist generation. To iterate over all Scms objects avail-
able in the database you could use this strategy:

Db db = new Db();

int[] trs = db.GetTrackIds();

IDataReader = getTracks(trs);

Scms[] s = new Scms[10];

int[] m = new int[10];

Scms q = db.GetTrack(1);

while (int n=db.GetNextTracks(ref dr, ref s, ref m, 10 ))>0)

{

// compute the distance to all tracks

for (int i = 0; i < n; i++)

float d = q.Distance(Scms[i]);

}

Db()

Initializes a new Mirage SqLite database. Looks in the directory
/.mirage/ if there exists a database (usually db.sqlite3. If it does,
a database connection to this �le is established. If not, a newMirage
database is created and a connection to it established.
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int AddTrack(int trackid, Scms scms)

Adds the Scms song model to the databases using the internal
database identi�cator id. After adding it to the database the Scms

can be retrieved by using the GetTrack() or GetTracks() method.

trackid The id of the Scms to add the track to the
db.

scms The model to add to the db. The Scms object
is serialized and written to the database as a
binary blob.

Return value Returns the trackid if successful, -1 other-
wise.

Scms GetTrack(int trackid)

Retrieves one Scms for the given trackid from the database. If it
does not exist, null is returned.

trackid The id of the Scms to retrieve from the
database.

Return value The requested Scms object if the trackid was
found in the database. null otherwise.

int[] GetTrackIds()

Returns all IDs from the database. This method is useful for iter-
ating over all available Scms models in the database. It is usually
used in conjunction with the

GetTracks()

method.

Return value Returns an array of integer values, including
all IDs of Scms objects found in the database.

System.Data.IDataReader GetTracks(int[] trackid)

Returns an IDataReader for the requested tracks. This method ini-
tializes an iteration over the selected track ids. To actually retrieve
the Scms models use the GetNextModels() method.
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trackid An array of int values, which specify the
track IDs to be retrieved. Usually the ar-
ray is built by the GetTrackIds() method, if
all Scms models need to be retrieved.

Return value Returns an IDataReader object, which should
be then used in the GetNextModels() method
to retrieve the objects from the database.

int GetNextTracks(ref IDataReader tracksIterator, ref Scms[]

tracks, ref int[] mapping, int len)

Method to retrieve stored Scms objects from the database. This
iterating method is called with an IDataReader as parameter, which
has to be retrieved by the GetTracks() method.

ref tracksItera-
tor

The IDataReader object returned from the
GetTracks() call. This is used for further it-
eration over all values.

ref tracks An array where all retrieved Scms objects are
stored.

ref mapping A mapping of the tracks to track IDs, to
identify the Scms objects in the tracks array.

len The maximum number of Scms objects to be
returned at once.

Return value Returns the number of proper returned Scms

models. If it is lower than len or zero, all
Scms objects were read and there are no more
results available.

A.2. Basic Types

Matrix (← System.Object)

The Matrix class models a two dimensional matrix. It o�ers direct access
to the values by exposing the data array d. Functions to add (Add()),
substract (Substract()) or multiply (Multiply()) matrices are o�ered.
Statistic functions to compute the mean vector (Mean()) or covariance
(Covariance()) are implemented.
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Matrix(int rows, int columns)

The constructor creates a new Matrix with the dimensions speci�ed.

rows Number of rows
columns Number of columns
Return value The new Matrix

Matrix Add(Matrix m)

Adds m to the Matrix and returns the summed Matrix. m needs to
have the same dimensions as the Matrix to succeed, otherwise a
MatrixException is thrown.

m The Matrix to be added.
Return value The summed Matrix.

Matrix Covariance()

Computes the Covariance Matrix.

Return value The full covariance of the Matrix.

Matrix Inverse()

Uses the Gauss-Jordan elimination to compute the inverse A−1 of
the Matrix, so that A × A−1 = I, where I is the identity matrix.
The Gauss-Jordan elimination is very fast. Calculations are done
in decimal precision, to omit wrong results due to lack of numerical
precision.

Return value The inverse of the Matrix.

Matrix Inverse2()

Uses the LU decomposition to compute the inverse A−1 of the Ma-
trix.

Return value The inverse of the Matrix.

70



A.2 Basic Types 71

Vector Mean()

Calculate the mean vector for a Matrix.

Return value A Vector with the mean values.

Matrix Multiply(Matrix m)

Multiplies m with the Matrix. The elements of the returned matrix
are calculated as: cik = aijbjk. If the two matrices do not have
the same number of rows the multiplication is impossible and a
MatrixException is thrown.

m The Matrix to be multiplied. The matrix di-
mensions must match to succeed

Return value The multiplied Matrix.

void Print()

Prints the Matrix to the System output. Used for debugging pur-
poses.

Matrix Substract(Matrix m)

Substracts m from the Matrix and returns the result. m needs to
have the same dimensions as the Matrix to succeed, otherwise a
MatrixException is thrown.

m The Matrix to be subtracted.
Return value The subtracted Matrix.

void Write(string file)

Writes the Matrix to the speci�ed �le in binary format.

�le The �le to write the Matrix to.

int columns

The Number of columns in the Matrix. It is directly exposed as
integer because of performance reasons. Do not directly write to
this �eld.
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float[,] d

Gives you direct access to the Matrix values. It is a two-dimensional
array with the size rows× columns

int rows

The Number of rows in the Matrix. It is directly exposed as integer
because of performance reasons. Do not directly write to this �eld.

Vector (← Mirage.Mir.Matrix)

A Vector represents a one-dimensional Matrix. In Mirage it is used to
handle mean values correctly.

Vector(int rows)

The constructor creates a new Vector of the given size.

rows Number of rows.
Return value The new Vector object.

CovarianceMatrix (← System.Object)

The CovarianceMatrix class is a special class, it was created for memory
and performance reasons. Since the covariance matrices in Mirage are all
square matrices and symmetric, about half the values stored in a the co-
variance matrix repeat. The CovarianceMatrix class uses the knowledge
and stores only the required values. This reduces the memory needed for
about 50%.

CovarianceMatrix(int n)

The constructor creates a new CovarianceMatrix with the dimen-
sions n× n as speci�ed.

n Number of columns/rows
Return value The new CovarianceMatrix
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CovarianceMatrix(Matrix m)

The constructor creates a new CovarianceMatrix using m as source.
This can be used to transform the resulting Matrix from a Matrix::-
Covariance() call to a more memory e�cient one. This only works
for symmetric square matrices.

m The Matrix to be converted into a more mem-
ory e�cient one. m has to be symmetric and
square.

Return value The new CovarianceMatrix

CovarianceMatrix Add(CovarianceMatrix m)

Adds m to the CovarianceMatrix and returns the summed Covari-

anceMatrix. m needs to have the same dimensions as the Covari-

anceMatrix to succeed, otherwise a MatrixException is thrown.

m The CovarianceMatrix to be added.
Return value The summed CovarianceMatrix.

Matrix Multiply(CovarianceMatrix m)

Multiplies m with the CovarianceMatrix. The elements of the re-
turned matrix are calculated as: cik = aijbjk, taking the special
memory alignment of the class into account. Since multiplying two
symmetric marices does not yield to a symmetric matrix as a result,
a full Matrix has to be returned. If the two covariance matrices do
not have the same number of rows the multiplication is impossible
and a MatrixException is thrown.

m The Matrix to be multiplied. The matrix di-
mensions must match to succeed

Return value The multiplied Matrix.

int dim

The Number of columns and rows in the square and symmetric
CovarianceMatrix. It is directly exposed as integer because of per-
formance reasons. Do not directly write to this �eld.

73



A.3 Internal 74

float[] d

Gives you direct access to the CovarianceMatrix values. The array
has a special layout. To access the value aij use the formula idxaij

=

jd + i− (j+1)2−(j+1)
2

, where d = dim and i, j are the indices for the
two dimensional matrix. Since the special-case CovarianceMatrix
object stores only one half of the Matrix, the index values i, j need
to be swapped if j > i to retrieve the correct value.

A.3. Internal

Mfcc (← System.Object)

An object used for computing the Mel Frequency Cepstral Coe�cients.

Mfcc(int winsize, int srate, int filters, int cc)

Initializes the class with the basic parameters for computing the
MFCCs. The MFCC �lter weights are precomputed in the con-
structor to speed up MFCC calculation.

winsize The windowsize for the MFCCs.
srate The samplingrate of subsequent data.
�lters The number of MFCC �lters.
cc The number of Cepstral Coe�cients.

Matrix Apply(Matrix m)

Computes the MFCCs for the given Matrix. The Matrix is usually
the result of an short time Fourier transformation (STFT), or the
result of a Mpg123FileReader::Read() call.

m The STFT for which the MFCCs should be
computed.

Return value The MFCCs for the input.
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Mpg123FileReader (← System.Object)

MP3 �le reading class using the Fft123 tool.

static Matrix Read(string fileIn)

This static method is used to read the given MP3 �le. It returns
the STFT representation of the selected MP3. It uses the Fft123
tool, which has to be in the PATH otherwise all calls to this method
fail.

�leIn The �lename of the MP3 which should be
read.

Return value A Matrix with the STFT representation of
the MP3. This Matrix can be used to calcu-
late the MFCC values of the MP3 to further
compute an Scms model of it.

A.4. Debugging

Dbg (← System.Object)

Debugging functions are available in this class.

static void WriteLine(String l)

Writes the given string to the Terminal and appends a newline
character.

l Debug String, which should be written to the
Terminal.

static void Write(String l)

Writes the given string to the Terminal.

l Debug String, which should be written to the
Terminal.
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Timer (← System.Object)

Used to measure execution time of processes. It can be used very easily.
The total execution time in milliseconds is returned by Stop(), after
calling Start() to start measuring.

Timer()

Default constructor, initializing the Timer.

void Start()

Starts the time measurement.

long Stop()

Stops the time measurement and returns the number of milliseconds
which lay between the Start() and Stop() call.

Return value Number of milliseconds since calling Start().
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Appendix B

B. Tracklist Small Testset

Alternative/Everlast - Black Jesus
Alternative/Garbage - Only Happy When It Rains
Alternative/Garbage - Supervixen
Alternative/Maxim Feat. Skin - Carmen Queasy
Alternative/Placebo - Every You Every Me
Alternative/Placebo - Slave To The Wage
Alternative/The Strokes - Someday
Blues/01 - Dave Brubeck Quartet - Blue Rondo A La Turk
Blues/02 - Dave Brubeck Quartet - Strange Meadow Lark
Blues/03 - Dave Brubeck Quartet - Take Five
Blues/04 - Dave Brubeck Quartet - Three To Get Ready
Blues/05 - Dave Brubeck Quartet - Kathy's Waltz
Blues/06 - Dave Brubeck Quartet - Everybody's Jumpin'
Blues/07 - Dave Brubeck Quartet - Pick Up Sticks
Blues/St Germain - Tourist Rose Rouge
Classic Orchestra/03 -  - Nikolai Rimsky Korsakow - Das Maerchen vom 
Zarenn Saltan - Hummelflug
Classic Orchestra/04 -  - Maurice Ravel - Bolero
Classic Orchestra/05 -  - Richard Strauss - Salome op54 - Tanz der Sieben 
Schleier (Karajan)
Classic Orchestra/06 -  - Modest Mussorgsky - Chowantschina - Vorspiel, 
Morgendaemmerung an der Moskwa
Classic Orchestra/07 -  - Jacques Offenbach - Hoffmanns Erzaehlungen - 
Barcarole
Classic Orchestra/08 -  - Peter I Tschaikowsky - Romeo und Julia - 
Liebesthema (Karajan)
Classic Piano/03 - Vladimir Horowitz - Piano Sonata in B flat major, K.281 - 
Rondeau- Allegro
Classic Piano/04 - Chopin - Etude, Op  25, No  7
Classic Piano/04 - Vladimir Horowitz - Piano Sonata in C major, K.330 - Allegro 
Moderato
Classic Piano/05 - Vladimir Horowitz - Piano Sonata in C major, K.330 - 
Andante Cantibile
Classic Piano/06 - Vladimir Horowitz - Piano Sonata in C major, K.330 - 
Allegretto
Classic Piano/07 - Chopin - Waltz, Op 69, No  1
Classic Piano/08 - Chopin - Andante spianato, Op 22
Classic Piano/ - Johann Sebastian Bach - Brandenburgisches Konzert Nr. 6, B-
Dur, BWV 1051 - Adagio, ma non tanto
Classic Piano/ - Samuael Barber - Adagio fuer Streicher op. 11
Dance/Djs At Work - Someday (Vocal Edit)
Dance/Djs At Work - Time To Wonder
Dance/Jan Wayne Meets Lena - Total Eclipse Of The Heart
Dance/Kai Tracid - Tiefenrausch
Dance/Snap - Rhythm Is A Dancer 2003
Dance/Snap - Rythm Is A Dancer
Dance/Daddy Dj - Daddy Dj
Dance/Groove Coverage - God Is A Girl
Dance/Fragma - You Are Alive
Eurodance/666 - Paradoxx
Eurodance/Doki Doki - Too Fast For Love
Eurodance/Ephony - Dancing In The Rain
Eurodance/Flex - Spider
Eurodance/Magic Affair - Omen 3
Eurodance/Scooter - Maria (I Like it Loud)
Eurodance/La Bouche - Be My Lover
Eurodance/La Bouche - Another Night Another Dream
Eurodance/Eurythmics - Sweet Dreams
Happy Sound/Ace of Base - Beautiful Morning (Groove Radio Edit)
Happy Sound/Celine Dion - Im Alive
Happy Sound/Celine Dion - Thats The Way It Is
Happy Sound/Celion Dion - A New Day Has Come
Happy Sound/Vanessa Amorosi - Absolutely Everybody
Happy Sound/Vanessa Amorosi - Everytime I Close My Eyes
Hard Pop/Bon Jovi - Bad Medicine
Hard Pop/Bon Jovi - Everyday
Hard Pop/Bon Jovi - Its My Life
Hard Pop/Bon Jovi - Living On A Prayer
Hard Pop/Evanescene - Bring Me To Life
Hard Pop/Guano Apes - Open Your Eyes
Hard Pop/Guano Apes - No Speech
Hard Pop/The Killers - Somebody Told Me
Hip Hop/Dmx - Ruff Riders Anthem
Hip Hop/Dmx - Up In Here
Hip Hop/Dmx - Why Do Good Girls Like Bad Guys
Hip Hop/Mya - Case Of The Ex
Hip Hop/Mya - Free
Hip Hop/Nelly - Country Grammar
Hip Hop/Nelly - EII
Hip Hop/Blu Cantrell Feat. Sean Paul - Breathe (Remix)
Hip Hop/Die Fantastischen Vier - Troy
Hip Hop/Seeed - Dickes B
Hip Hop/Xzibit \& Dr Dre - Symphony In X Major (Explicit Version)
Hip Hop/Xzibit - 'X' (Explicit)
Mystera/Enya - Anywhere Is
Mystera/Enya - Book Of Days
Mystera/Enya - Exile
Mystera/Enya - La So adora
Mystera/Enya - Only Time
Mystera/Enya - Orinoco Flow (Sail Away)

Mystera/Enya - Storms In Africa
Mystera/Vangelis - Chariots Of Fire
Pop/Britney Spears - Crazy
Pop/Britney Spears - Lucky
Pop/Christina Aguilera - Genie In A Bottle
Pop/Emma Bunton - What Took You So Long
Pop/Phil Collins - Can't Stop Loving You
Pop/Texas - Summer Son
Punk Rock/Blink 182 - All The Small Things
Punk Rock/Bloodhound Gang - Along Comes Mary
Punk Rock/Die Aerzte - Westerland
Punk Rock/Die Ärzte - Schrei Nach Liebe
Punk Rock/Die Toten Hosen - Paradies
Punk Rock/Offspring - Self Esteem
Punk Rock/Offspring- Defy You
Punk Rock/Papa Roach - Last Resort
Punk Rock/Bad Religion - 21st Century Digital Boy
Rock/Beach Boys - Surfin Usa
Rock/Bruce Springsteen - Born In The Usa
Rock/Steppenwolf - Born To Be Wild
Rock/U2 - Sunday Bloody Sunday
Rockn Roll/Bill Haley \& The Comets - Rock Around The Clock
Rockn Roll/Bill Haley \& The Comets - See You Later Alligator
Rockn Roll/Little Eva - Locomotion
Rockn Roll/Manfred Mann - Do Wah Diddy Diddy
Rockn Roll/Queen - Dont Stop Me Now
Rockn Roll/Rubettes - Juke Box Jive
Rockn Roll/Grease - You're The One That I Want
Romantic Dinner/Elvis Costello - She
Romantic Dinner/Etta James - At Last
Romantic Dinner/Evita - Don't Cry For Me Argentina 
Romantic Dinner/Hothouse Flowers - I Can See Clearly Now
Romantic Dinner/Tammy Wynette - Stand By Your Man
Romantic Dinner/Tony Bennett - I Left My Heart In San Francisco
Talk/Dorfer u. Dueringer - Auf dem Wachzimmer
Talk/Maurer u. Scheuba - Voelkische Comedy
Talk/Maurer u. Scheuba - Zwischenspiel
Talk/Otto Waalkes - Der Bergdoktor
Talk/Otto Waalkes - Die Gruene Hoelle
Talk/Otto Waalkes - Wodka Zischer}
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